scholarly journals The effects of firework regulation on air quality and public health during the Chinese Spring Festival from 2013 to 2017 in a Chinese megacity

2019 ◽  
Vol 126 ◽  
pp. 96-106 ◽  
Author(s):  
Lan Yao ◽  
Dongfang Wang ◽  
Qingyan Fu ◽  
Liping Qiao ◽  
Hongli Wang ◽  
...  
2012 ◽  
Vol 12 (23) ◽  
pp. 11631-11645 ◽  
Author(s):  
K. Huang ◽  
G. Zhuang ◽  
Y. Lin ◽  
Q. Wang ◽  
J. S. Fu ◽  
...  

Abstract. The Chinese Spring Festival is one of the most important traditional festivals in China. The peak transport in the Spring Festival season (spring travel rush) provides a unique opportunity for investigating the impact of human activity on air quality in the Chinese megacities. Emission sources are varied and fluctuate greatly before, during and after the Festival. Increased vehicular emissions during the "spring travel rush" before the 2009 Festival resulted in high level pollutants of NOx (270 μg m−3), CO (2572 μg m−3), black carbon (BC) (8.5 μg m−3) and extremely low single scattering albedo of 0.76 in Shanghai, indicating strong, fresh combustion. Organics contributed most to PM2.5, followed by NO3−, NH4+, and SO42−. During the Chinese Lunar New Year's Eve and Day, widespread usage of fireworks caused heavy pollution of extremely high aerosol concentration, scattering coefficient, SO2, and NOx. Due to the "spring travel rush" after the festival, anthropogenic emissions gradually climbed and mirrored corresponding increases in the aerosol components and gaseous pollutants. Secondary inorganic aerosol (SO42−, NO3−, and NH4+) accounted for a dominant fraction of 74% in PM2.5 due to an increase in human activity. There was a greater demand for energy as vast numbers of people using public transportation or driving their own vehicles returned home after the Festival. Factories and constructions sites were operating again. The potential source contribution function (PSCF) analysis illustrated the possible source areas for air pollutants of Shanghai. The effects of regional and long-range transport were both revealed. Five major sources, i.e. natural sources, vehicular emissions, burning of fireworks, industrial and metallurgical emissions, and coal burning were identified using the principle component analysis. The average visibility during the whole study period was less than 6 km. It had been estimated that 50% of the total light extinction was due to the high water vapor in the atmosphere. This study demonstrates that organic aerosol was the largest contributor to aerosol extinction at 47%, followed by sulfate ammonium, nitrate ammonium, and EC at 22%, 14%, and 12%, respectively. Our results indicated the dominant role of traffic-related aerosol species (i.e. organic aerosol, nitrate and EC) on the formation of air pollution, and suggested the importance of controlling vehicle numbers and emissions in mega-cities of China as its population and economy continue to grow.


2015 ◽  
Vol 15 (4) ◽  
pp. 2167-2184 ◽  
Author(s):  
S. F. Kong ◽  
L. Li ◽  
X. X. Li ◽  
Y. Yin ◽  
K. Chen ◽  
...  

Abstract. To understand the impact of firework-burning (FW) particles on air quality and human health during the winter haze period, 39 elements, 10 water-soluble ions and 8 fractions of carbonaceous species in atmospheric PM2.5 in Nanjing were investigated during the 2014 Chinese Spring Festival (SF). Serious regional haze pollution persisted throughout the entire sampling period, with PM2.5 averaging at 113 ± 69 μg m−3 and visibility at 4.8 ± 3.2 km. The holiday effect led to almost all the chemical species decreasing during the SF, except for Al, K, Ba and Sr which were related to FW. The source contributions of coal combustion, vehicle emission and road dust decreased dramatically, whereas FW contributed to about half of the PM2.5 during the SF period. The intensive emission of FW particles on New Year's Eve accounted for 60.1% of the PM2.5. Fireworks also obviously modified the chemical compositions of PM2.5, with 39.3% contributed by increased organic matter, followed by steadily increased loadings of secondary inorganic ions. The aging processes of the FW particles lasted for about 4 days reflected by the variations of Ba, Sr, NH4+, NO3−, SO42− and K+, characterized by heterogeneous reactions of SO2 and NOx on crustal materials directly from FW, the replacement of Cl− by NO3− and SO42−, coating of NO3− and SO42− on soot, formation of secondary organic aerosols and metal-catalyzed formation of NO3− and SO42− at higher relative humidity. During aging, the main contributors to the extinction coefficient shifted from elemental carbon and organic matter to ammonium sulfate. The particles raised higher cancer risk of 1.62 × 10−6 by heavy metals (especially for Cd and As). This study provided detailed composition data and first comprehensive analysis of the aging processes of FW particles during the serious haze pollution period and their potential impact on human health.


2014 ◽  
Vol 14 (21) ◽  
pp. 28609-28655 ◽  
Author(s):  
S. Kong ◽  
L. Li ◽  
X. Li ◽  
Y. Yin ◽  
K. Chen ◽  
...  

Abstract. To understand the impact of fireworks burning (FW) particles on air quality and human health during winter haze period, thirty-nine elements, ten water-soluble ions and eight fractions of carbonaceous species in atmospheric PM2.5 at Nanjing were investigated during 2014 Chinese Spring Festival (SF). Serious regional haze pollution persisted throughout the entire sampling period, PM2.5 averaging at 113 ± 69 μg m−3 and visibility at 4.8 ± 3.2 km. The holiday effect led to almost all the chemical species decreasing during the SF, except for Al, K, Ba and Sr which were related to FW. The source contributions of coal combustion, vehicle emission and road dust descreased dramatically, whereas FW contributed to about half of the PM2.5 during SF period. The intensive emission of FW particles at New Year's Eve accounted for 60.1% of the PM2.5. They also significnatly modified the chemical compositions of PM2.5, with 39.3% contributed by increased organic matter, followed by steadly increased loadings of secondary inorganic ions. The aging processes of the FW particles lasted for at least six days reflected by the variation of SO42−, characterized by heterogeneous reactions of SO2 and NOx on crustal materials directly from FW, the replacement of Cl− by NO3− and SO42− coating of NO3− and SO42− on soot, formation of secondary organic aerosols and metal-catalyzed formation of NO3− and SO42− at higher relative humidity. During aging, the main contributors to the extinction coefficient shifted from elemental carbon and organic matter to sulfate ammonium. The particles raised higher cancer risks by heavy metals (especially for Cd and As) as 1.62 ×10−6. This study provided detailed composition data and first comprehensive analysis of the aging processes of FW particles at serious haze pollution period and their potential impact on human health.


2012 ◽  
Vol 12 (7) ◽  
pp. 17151-17185 ◽  
Author(s):  
K. Huang ◽  
G. Zhuang ◽  
Y. Lin ◽  
Q. Wang ◽  
J. S. Fu ◽  
...  

Abstract. The Chinese Spring Festival is one of the most important traditional festivals in China. The peak transport in the Spring Festival season (spring travel rush) provides a unique opportunity for investigating the impact of human activities on air quality in the Chinese megacities as emission sources varied and fluctuated greatly prior to, during and after the festival. Enhanced vehicular emission during the spring travel rush before the festival resulted in high level pollutants of NOx (270 μg m−3), CO (2572 μg m−3), BC (8.5 μg m−3) and extremely low single scattering albedo of 0.70, indicating strong fresh combustion. Organics contributed most to PM2.5, followed by NO3−, NH4+, and SO42−. During the Chinese Lunar New Year's Eve and Day, widespread usage of fireworks burning caused heavy pollution of extremely high aerosol mass concentration, scattering coefficient, SO2 and NOx. Due to the spring travel rush after the festival, anthropogenic emission gradually climbed and mirrored corresponding increases in the aerosol components and gaseous pollutants. Secondary inorganic aerosol (SO42−, NO3−, and NH4+) accounted for a dominant fraction of 74% in PM2.5 due to the enhanced human activities, e.g. higher demand of energy usage from returned residents and re-open of factories and construction sites, more vehicle mileages due to returned workers and expanded public transportation. The average visibility during whole study period was less than 6 km. It was estimated that about 50% of the total light extinction was due to the high water vapor in the atmosphere. Of the aerosol extinction, organic aerosol had the largest contribution of 47%, followed by sulfate ammonium, nitrate ammonium and EC of 22%, 14%, and 12%, respectively. Our results indicated the dominant role of traffic-related aerosol species (i.e. organic aerosol, nitrate and EC) on the formation of air pollution, and suggested the importance of controlling vehicle numbers and emissions in mega-cities of China as its population and economy continue to grow.


Author(s):  
I. V. May ◽  
A. A. Kokoulina ◽  
S. Yu. Balashov

Introduction. The city of Chita of Zabaikalsky region is one of the cities of Russia, priority on level of pollution of atmosphere. Of the order of 130 impurities emitted by the sources of the city, 12 are monitored at 5 posts of the Roshydromet network. Maximum monthly average concentrations are formed by benz (a) pyrene (up to 56.8 MPC), hydrogen sulfide (12.3 MPC), suspended particles (up to 4PDC), phenol (up to 3.6 MPC). Significant emissions (59.73 thousand tons in 2018) are aggravated by the use of coal as a fuel by heat and power enterprises and the private sector, climatic and geographical features. Within the framework of the Federal project “Clean Air” of the national project “Ecology”, it is envisaged to reduce the gross emission of pollutants into the atmosphere of Chita by 8.75 thousand tons by 2024, which should lead to a significant improvement in the safety and quality of life of citizens. It is necessary to identify the most “risky “components of pollution for health.It is important to understand: whether the environmental monitoring system reflects the real picture of the dangers posed by pollution of the city’s atmosphere; whether there is a need to optimize the monitoring system for the subsequent assessment of the effectiveness and efficiency of measures; what impurities and at what points should be monitored in the interests of the population, administration and economic entities implementing air protection measures.The aim of the study is to develop recommendations for optimizing the program of environmental monitoring of air quality in the city of Chita, taking into account the criteria of danger to public health for the subsequent evaluation of the effectiveness and effectiveness of the Federal project “Clean Air”.Materials and methods. Justification of optimization of monitoring programs was carried out through the calculation of hazard indices, considering: the mass of emissions and toxicological characteristics of each chemical; the population under the influence. A vector map of the city with a layer “population density” was used as a topographic base. The indices were calculated for regular grid cells covering the residential area. For each cell, the repeatability of winds of 8 points from the priority enterprises and the population within the calculated cell were taken into account. As a result, each calculation cell was characterized by a total coefficient, taking into account the danger of potential impacts of emissions. Based on the results of the assessments, recommendations were formulated to optimize the placement of posts in the city and the formation of monitoring programs.Results. Indices of carcinogenic danger to the health of the population of Chita ranged from 584,805. 96 to 0.03 (priorities: carbon (soot), benzene, benz (a) pyrene); indices of non-carcinogenic danger — from 1,443,558. 24 to 0.00 (priorities: sulfur dioxide, inorganic dust containing 70–20% SiO2, fuel oil ash). The greatest danger to public health stationary sources of emissions form in the North-Western, Western and South-Eastern parts of the city. Roshydromet posts in these zones are absent.Conclusions. As part of the objectives of the project “Clean Air”, it is recommended to Supplement the existing state network of observations of atmospheric air quality in Chita with two posts; to include manganese, xylene, vanadium pentoxide in the monitoring programs, to carry out the determination of Benz(a)pyrene et all posts, which will allow to fully and adequately assess the danger of emissions of economic entities, as well as the effectiveness and efficiency of the provided air protection measures.


2021 ◽  
Vol 13 (3) ◽  
pp. 488
Author(s):  
Aimon Tanvir ◽  
Zeeshan Javed ◽  
Zhu Jian ◽  
Sanbao Zhang ◽  
Muhammad Bilal ◽  
...  

Reduced mobility and less anthropogenic activity under special case circumstances over various parts of the world have pronounced effects on air quality. The objective of this study is to investigate the impact of reduced anthropogenic activity on air quality in the mega city of Shanghai, China. Observations from the highly sophisticated multi-axis differential optical absorption spectroscope (MAX-DOAS) instrument were used for nitrogen dioxide (NO2) and formaldehyde (HCHO) column densities. In situ measurements for NO2, ozone (O3), particulate matter (PM2.5) and the air quality index (AQI) were also used. The concentration of trace gases in the atmosphere reduces significantly during annual Spring Festival holidays, whereby mobility is reduced and anthropogenic activities come to a halt. The COVID-19 lockdown during 2020 resulted in a considerable drop in vertical column densities (VCDs) of HCHO and NO2 during lockdown Level-1, which refers to strict lockdown, i.e., strict measures taken to reduce mobility (43% for NO2; 24% for HCHO), and lockdown Level-2, which refers to relaxed lockdown, i.e., when the mobility restrictions were relaxed somehow (20% for NO2; 22% for HCHO), compared with pre-lockdown days, as measured by the MAX-DOAS instrument. However, for 2019, a reduction in VCDs was found only during Level-1 (24% for NO2; 6.62% for HCHO), when the Spring Festival happened. The weekly cycle for NO2 and HCHO depicts no significant effect of weekends on the lockdown. After the start of the Spring Festival, the VCDs of NO2 and HCHO showed a decline for 2019 as well as 2020. Backward trajectories calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicated more air masses coming from the sea after the Spring Festival for 2019 and 2020, implying that a low pollutant load was carried by them. No impact of anthropogenic activity was found on O3 concentration. The results indicate that the ratio of HCHO to NO2 (RFN) fell in the volatile organic compound (VOC)-limited regime.


2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


2015 ◽  
Vol 15 (21) ◽  
pp. 31385-31432
Author(s):  
Y. H. Lee ◽  
D. T. Shindell ◽  
G. Faluvegi ◽  
R. W. Pinder

Abstract. We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that reduces 2050 CO2 emissions to be 50 % below 2005 emissions. Using NASA GISS ModelE2, we look at the impacts in year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL for the Purpose of Scenario Exploration), and other US emissions and the rest of the world emissions are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in the future but result in positive radiative forcing. Surface PM2.5 is reduced by ~ 2 μg m−3 on average over the US, and surface ozone by ~ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the US, mainly due to the PM2.5 reduction (~ 74 200 lives saved). The air quality regulations reduces the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading a strong positive radiative forcing (RF) by both aerosols direct and indirect forcing: total RF is ~ 0.04 W m−2 over the globe; ~ 0.8 W m−2 over the US. Under the hypothetical climate policy, future US energy relies less on coal and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it leads to climate dis-benefits over the US. In 2055, the US mean total RF is +0.22 W m−2 due to positive aerosol direct and indirect forcing, while the global mean total RF is −0.06 W m−2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multi-national efforts to reduce GHGs emissions and (2) to target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides co-benefits to air quality and public health.


Author(s):  
Joanne Stares ◽  
Jenny Sutherland

ABSTRACT ObjectivesUnderlying the delivery of services by the universal Canadian health care system are a number of rich secondary administrative health data sets which contain information on persons who are registered for care and details on their contacts with the system. These datasets are powerful sources of information for investigation of non-notifiable diseases and as an adjunct to traditional communicable disease surveillance. However, there are gaps between public health practitioners, access to these data, and access to experts in the use of these secondary data. The data linkage requires in-depth knowledge of these data including usages, limitations and data quality issues and also the skills to extract data to support secondary usage. OLAP reports have been developed to support operation needs but not on advanced analytics reports for surveillance and cohort study. To fill these gaps, we developed a set of web-based modular, parameterized, extraction and reporting tools for the purpose of: 1) decreasing the time and resources necessary to fill general secondary data requests for public health audiences; 2) quickly providing information from descriptive analysis of secondary data to public health practitioners; 3) informing the development of data feeds for continued enhanced surveillance or further data access requests; 4) assisting in preliminary stages of epidemiological investigations of non-notifiable diseases; and, 5) facilitating access to information from secondary data for evidence-based decision making in public health. ApproachWe intend to present these tools by case study of their application to small area analysis of secondary data in the context of air quality concerns. Data sources include individuals registered for health care coverage in BC, hospital separations, physician consultations, chronic disease registries, and drugs dispensation. Data sets contain complete information from 1992. Data were extracted and analyzed to describe the occurrence of health service utilization for cardiovascular and respiratory morbidity. Analysis was undertaken for BC residents in areas identified by local public health as priorities for monitoring. Health outcomes were directly standardized by age and compared to provincial trends by use of the comparative morbidity figure. ResultsResults will include descriptive epidemiological analysis of secondary data relating to respiratory and cardiovascular morbidity in the context of air quality concerns, summary of next steps, as well as an assessment of tool performance. ConclusionsWhere adopted tools such as these can make information from secondary data more accessible to support public health practice, particularly in regions with low analytical or epidemiological capacity.


1996 ◽  
Vol 20 (3) ◽  
pp. 301-308
Author(s):  
Charles S. Guest ◽  
Philip Morgan ◽  
John R. Moss ◽  
Alistair J. Woodward ◽  
Anthony J. McMichael

Sign in / Sign up

Export Citation Format

Share Document