Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – Resume from the free-air fumigation study at Kranzberg Forest

2010 ◽  
Vol 158 (8) ◽  
pp. 2527-2532 ◽  
Author(s):  
R. Matyssek ◽  
G. Wieser ◽  
R. Ceulemans ◽  
H. Rennenberg ◽  
H. Pretzsch ◽  
...  
2021 ◽  
Author(s):  
Lutz Beckebanze ◽  
Zoé Rehder ◽  
David Holl ◽  
Charlotta Mirbach ◽  
Christian Wille ◽  
...  

Abstract. Arctic permafrost landscapes have functioned as a global carbon sink for millennia. These landscapes are very heterogeneous, and the omnipresent waterbodies are a carbon source within them. Yet, only a few studies focus on the impact of these waterbodies on the landscape carbon budget. We compare carbon dioxide and methane fluxes from small waterbodies to fluxes from the surrounding tundra using eddy covariance measurements from a tower located between a large pond and semi-terrestrial vegetated tundra. When taking the open-water areas of small waterbodies into account, the carbon dioxide sink strength of the landscape was reduced by 11 %. While open-water methane emissions were similar to the tundra emissions, some parts of the studied pond's shoreline exhibited much higher emissions, underlining the high spatial variability of methane emissions. We conclude that gas fluxes from small waterbodies can contribute significantly to the carbon budget of arctic tundra landscapes. Consequently, changes in arctic hydrology and the concomitant changes in the waterbody distribution may substantially impact the overall carbon budget of the Arctic.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yin Li ◽  
Min Tu ◽  
Yaping Feng ◽  
Wenqin Wang ◽  
Joachim Messing

The original version of the article [1] unfortunately contained a mistake in author’s first name. The name of the author has been corrected from Wenqing Wang to Wenqin Wang in this correction article. The original article [1] has been corrected.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yin Li ◽  
Min Tu ◽  
Yaping Feng ◽  
Wenqin Wang ◽  
Joachim Messing

Abstract Background Sorghum bicolor (L.) is an important bioenergy source. The stems of sweet sorghum function as carbon sinks and accumulate large amounts of sugars and lignocellulosic biomass and considerable amounts of starch, therefore providing a model of carbon allocation and accumulation for other bioenergy crops. While omics data sets for sugar accumulation have been reported in different genotypes, the common features of primary metabolism in sweet genotypes remain unclear. To obtain a cohesive and comparative picture of carbohydrate metabolism between sorghum genotypes, we compared the phenotypes and transcriptome dynamics of sugar-accumulating internodes among three different sweet genotypes (Della, Rio, and SIL-05) and two non-sweet genotypes (BTx406 and R9188). Results Field experiments showed that Della and Rio had similar dynamics and internode patterns of sugar concentration, albeit distinct other phenotypes. Interestingly, cellulose synthases for primary cell wall and key genes in starch synthesis and degradation were coordinately upregulated in sweet genotypes. Sweet sorghums maintained active monolignol biosynthesis compared to the non-sweet genotypes. Comparative RNA-seq results support the role of candidate Tonoplast Sugar Transporter gene (TST), but not the Sugars Will Eventually be Exported Transporter genes (SWEETs) in the different sugar accumulations between sweet and non-sweet genotypes. Conclusions Comparisons of the expression dynamics of carbon metabolic genes across the RNA-seq data sets identify several candidate genes with contrasting expression patterns between sweet and non-sweet sorghum lines, including genes required for cellulose and monolignol synthesis (CesA, PTAL, and CCR), starch metabolism (AGPase, SS, SBE, and G6P-translocator SbGPT2), and sucrose metabolism and transport (TPP and TST2). The common transcriptome features of primary metabolism identified here suggest the metabolic networks contributing to carbon sink strength in sorghum internodes, prioritize the candidate genes for manipulating carbon allocation with bioenergy purposes, and provide a comparative and cohesive picture of the complexity of carbon sink strength in sorghum stem.


Author(s):  
Ursula M Ruiz-Vera ◽  
Amanda P De Souza ◽  
Michael R Ament ◽  
Roslyn M Gleadow ◽  
Donald R Ort

Abstract Cassava has the potential to alleviate food insecurity in many tropical regions, yet few breeding efforts to increase yield have been made. Improved photosynthetic efficiency in cassava has the potential to increase yields, but cassava roots must have sufficient sink strength to prevent carbohydrates from accumulating in leaf tissue and suppressing photosynthesis. Here, we grew eight farmer-preferred African cassava cultivars under free-air CO2 enrichment (FACE) to evaluate the sink strength of cassava roots when photosynthesis increases due to elevated CO2 concentrations ([CO2]). Relative to the ambient treatments, elevated [CO2] treatments increased fresh (+27%) and dry (+37%) root biomass, which was driven by an increase in photosynthesis (+31%) and the absence of photosynthetic down-regulation over the growing season. Moreover, intrinsic water use efficiency improved under elevated [CO2] conditions, while leaf protein content and leaf and root cyanide concentrations were not affected. Overall, these results suggest that higher cassava yields can be expected as atmospheric [CO2] increases over the coming decades. However, there were cultivar differences in the partitioning of resources to roots versus above-grown biomass; thus, the particular responses of each cultivar must be considered when selecting candidates for improvement.


2020 ◽  
Author(s):  
Gillian Simpson ◽  
Carole Helfter ◽  
Caroline Nichol ◽  
Tom Wade

<p>Peatlands are terrestrial carbon sinks of global significance, storing an estimated one-third of global soil carbon. Net Ecosystem Exchange (NEE) of carbon dioxide (CO<sub>2</sub>) can however vary substantially on seasonal and inter-annual timescales, with some peatlands switching from a sink to a source of CO<sub>2</sub>. Complex and sometimes competing processes, such as meteorology and phenology, regulate a peatland’s net carbon sink strength. Understanding seasonal and inter-annual variability in NEE requires studying these environmental controls at multiple spatial and temporal scales. The role of vegetation in regulating NEE can be particularly difficult to ascertain at the finer timescales (e.g. seasonal) and at sites with abundant plant diversity, non-uniform distribution and complex micro-topography, such as peatlands. Vegetation surveys are traditionally conducted every few years and, because of this, they might not capture the shorter-term variations that can result from meteorological anomalies such as drought. New technologies, such as Unmanned Aerial Vehicles (UAVs), offer novel opportunities to improve the temporal resolution and spatial coverage of traditional vegetation survey approaches. UAVs are a more flexible, often cheaper alternative to satellite products, which can be used to collect data at the sub-centimetre scale. Such high resolution is particularly valuable in peatland environments, which typically display strong heterogeneity at the micro-site level (< 0.5 m). We employ UAV surveys with a Parrot Sequoia multispectral camera to map vegetation and track its phenology using vegetation indices such as the Normalised Difference Vegetation Index (NDVI) over the course of two growing seasons at a temperate Scottish peatland. By combining this multispectral data with in-situ NEE measurements (closed chambers and eddy-covariance) and meteorological data, this project aims to quantify the impact of weather and phenology on carbon balance at the site. An improved understanding of these two drivers of peatland carbon cycling will allow for better prediction of the impact of climate change at the site.</p>


2011 ◽  
Vol 8 (11) ◽  
pp. 3127-3138 ◽  
Author(s):  
W. Ritter ◽  
C. P. Andersen ◽  
R. Matyssek ◽  
T. E. E. Grams

Abstract. The present study compares the dynamics in carbon (C) allocation of adult deciduous beech (Fagus sylvatica) and evergreen spruce (Picea abies) during summer and in response to seven-year-long exposure with twice-ambient ozone (O3) concentrations (2 × O3). Focus was on the respiratory turn-over and translocation of recent photosynthates at various positions along the stems, coarse roots and soils. The hypotheses tested were that (1) 2 × O3 decreases the allocation of recent photosynthates to CO2 efflux of stems and coarse roots of adult trees, and that (2) according to their different O3 sensitivities this effect is stronger in beech than in spruce. Labeling of whole tree canopies was applied by releasing 13C depleted CO2 (δ13C of −46.9‰) using a free-air stable carbon isotope approach. Canopy air δ13C was reduced for about 2.5 weeks by ca. 8‰ in beech and 6‰ in spruce while the increase in CO2 concentration was limited to about 110 μl l−1 and 80 μl l−1, respectively. At the end of the labeling period, δ13C of stem CO2 efflux and phloem sugars was reduced to a similar extend by ca. 3–4‰ (beech) and ca. 2–3‰ (spruce). The fraction of labeled C (fE,new) in stem CO2 efflux amounted to 0.3 to 0.4, indicating slow C turnover of the respiratory supply system in both species. Elevated O3 slightly stimulated the allocation of recently fixed photosynthates to stem and coarse root respiration in spruce (rejection of hypothesis I for spruce), but resulted in a significant reduction in C flux in beech (acceptance of hypotheses I and II). The distinct decrease in C allocation to beech stems indicates the potential of chronic O3 stress to substantially mitigate the C sink strength of trees on the long-term scale.


2006 ◽  
Vol 84 (9) ◽  
pp. 1453-1461 ◽  
Author(s):  
M. Alejandra Equiza ◽  
Michael E. Day ◽  
Richard Jagels ◽  
Xiaochun Li

During the Eocene (ca. 45 Ma) a temperate climate at high northern latitudes provided an environment unlike any that currently exists on Earth. The growing season was characterized by long (up to 4 months) periods of continuous, low- to moderate-intensity illumination. While this remarkable light regime offered opportunities for substantial growth, it also imposed physiological challenges consequential to potential carbon sink–source imbalance and resulting downregulation of photosynthetic capacity. To better understand the physiology of adaptation to a continuous-light (CL) environment, we experimentally investigated the effects of CL and carbon sink–source relationships in the deciduous conifer Metasequoia glyptostroboides Hu et Cheng, an extant representative of a genus that was the dominant tree component of many Eocene high-latitude forests. We tested the importance of branch-level and whole-plant sinks in curtailing feedback inhibition and the specific roles of starch and sugars in that process using manipulative experiments. Trees growing under either normal day–night cycles or continuous illumination were subjected to reduction of local, branch-level sinks or both local and whole-tree sinks. Reduction in sink strength led to downregulation of photosynthetic capacity, as evidenced by reduction of photosynthetic rates, carboxylation capacity, and electron transfer capacity. Our results suggest that photosynthetic downregulation is minimized by maintenance of both whole-tree sinks and local sinks. downregulation showed a greater correlation with starch than with sugar content, and ultrastructural evidence indicated that foliar starch accumulated only in chloroplasts, and was accompanied by reduction in functional chloroplast grana, but showed no evidence of physical disruption of thylakoids.


2021 ◽  
Vol 9 ◽  
Author(s):  
James W. McLaughlin ◽  
Maara S. Packalen

Peatlands help regulate climate by sequestering (net removal) carbon from the atmosphere and storing it in plants and soils. However, as mean annual air temperature (MAAT) increases, peat carbon stocks may decrease. We conducted an in-depth synthesis of current knowledge about ecosystem controls on peatland carbon storage and fluxes to constrain the most influential parameters in probabilistic modelling of peat carbon sinks, such as Bayesian belief networks. Evaluated parameters included climate, carbon flux and mass, land cover, landscape position (defined here as elevation), fire records, and current and future climate scenarios for a 74,300 km2 landscape in the Hudson Bay Lowlands, Canada. The Bayesian belief network was constructed with four tiers: 1) exposure, expressed as MAAT, and the state variables of elevation and land cover; 2) sensitivity, expressed as ecosystem conditions relevant to peat carbon mass and its quality for decomposition, peat wetness, and fire; 3) carbon dioxide and methane fluxes and peat combustion; and 4) vulnerability of peat carbon sink strength under warmer MAAT. Simulations were conducted using current (−3.0 to 0.0°C), moderately warmer (0.1–4.0°C), and severely warmer (4.1–9.0°C) climate scenarios. Results from the severely warmer climate scenario projected an overall drying of peat, with approximately 20% reduction in the strong sink categories of net ecosystem exchange and peat carbon sink strength for the severely and, to a lesser degree, the moderately warmer climate scenarios relative to current MAAT. In the warmest temperature simulation, probability of methane emission decreased slightly and the probability of the strong peat carbon sink strength was 27% lower due to peat combustion. Our Bayesian belief network can assist land planners in decision-making for peatland-dominated landscapes, such as identifying high carbon storage areas and those projected to be at greatest risk of carbon loss due to climate change. Such areas may be designated, for example, as protected or reduced management intensity. The Bayesian belief network presented here is built on an in-depth knowledge synthesis to construct conditional probability tables, so is expected to apply to other peatland-dense jurisdictions by changing only elevation, peatland types, and MAAT.


Sign in / Sign up

Export Citation Format

Share Document