Effects of ambient particulate matter on fasting blood glucose: A systematic review and meta-analysis

2020 ◽  
Vol 258 ◽  
pp. 113589 ◽  
Author(s):  
Runmei Ma ◽  
Yi Zhang ◽  
Zhiying Sun ◽  
Dandan Xu ◽  
Tiantian Li
2018 ◽  
Vol 52 (21) ◽  
pp. 1357-1366 ◽  
Author(s):  
Margie H Davenport ◽  
Frances Sobierajski ◽  
Michelle F Mottola ◽  
Rachel J Skow ◽  
Victoria L Meah ◽  
...  

ObjectiveTo perform a systematic review and meta-analysis to explore the relationship between prenatal exercise and glycaemic control.DesignSystematic review with random-effects meta-analysis and meta-regression.Data sourcesOnline databases were searched up to 6 January 2017.Study eligibility criteriaStudies of all designs were included (except case studies and reviews) if they were published in English, Spanish or French, and contained information on the population (pregnant women without contraindication to exercise), intervention (subjective or objective measures of frequency, intensity, duration, volume or type of acute or chronic exercise, alone (‘exercise-only’) or in combination with other intervention components (eg, dietary; ‘exercise+cointervention’) at any stage of pregnancy), comparator (no exercise or different frequency, intensity, duration, volume and type of exercise) and outcome (glycaemic control).ResultsA total of 58 studies (n=8699) were included. There was ‘very low’ quality evidence showing that an acute bout of exercise was associated with a decrease in maternal blood glucose from before to during exercise (6 studies, n=123; mean difference (MD) −0.94 mmol/L, 95% CI −1.18 to −0.70, I2=41%) and following exercise (n=333; MD −0.57 mmol/L, 95% CI −0.72 to −0.41, I2=72%). Subgroup analysis showed that there were larger decreases in blood glucose following acute exercise in women with diabetes (n=26; MD −1.42, 95% CI −1.69 to −1.16, I2=8%) compared with those without diabetes (n=285; MD −0.46, 95% CI −0.60 to −0.32, I2=62%). Finally, chronic exercise-only interventions reduced fasting blood glucose compared with no exercise postintervention in women with diabetes (2 studies, n=70; MD −2.76, 95% CI −3.18 to −2.34, I2=52%; ‘low’ quality of evidence), but not in those without diabetes (9 studies, n=2174; MD −0.05, 95% CI −0.16 to 0.05, I2=79%).ConclusionAcute and chronic prenatal exercise reduced maternal circulating blood glucose concentrations, with a larger effect in women with diabetes.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3377
Author(s):  
Omorogieva Ojo ◽  
Xiao-Hua Wang ◽  
Osarhumwese Osaretin Ojo ◽  
Amanda Rodrigues Amorim Adegboye

The use of nutritional interventions for managing diabetes is one of the effective strategies aimed at reducing the global prevalence of the condition, which is on the rise. Almonds are the most consumed tree nut and they are known to be rich sources of protein, monounsaturated fatty acids, essential minerals, and dietary fibre. Therefore, the aim of this review was to evaluate the effects of almonds on gut microbiota, glycometabolism, and inflammatory parameters in patients with type 2 diabetes. Methods: This systematic review and meta-analysis was carried out according to the preferred reporting items for systematic review and meta-analysis (PRISMA). EBSCOhost, which encompasses the Health Sciences Research Databases; Google Scholar; EMBASE; and the reference lists of articles were searched based on population, intervention, control, outcome, and study (PICOS) framework. Searches were carried out from database inception until 1 August 2021 based on medical subject headings (MesH) and synonyms. The meta-analysis was carried out with the Review Manager (RevMan) 5.3 software. Results: Nine randomised studies were included in the systematic review and eight were used for the meta-analysis. The results would suggest that almond-based diets have significant effects in promoting the growth of short-chain fatty acid (SCFA)-producing gut microbiota. Furthermore, the meta-analysis showed that almond-based diets were effective in significantly lowering (p < 0.05) glycated haemoglobin (HbA1c) levels and body mass index (BMI) in patients with type 2 diabetes. However, it was also found that the effects of almonds were not significant (p > 0.05) in relation to fasting blood glucose, 2 h postprandial blood glucose, inflammatory markers (C-reactive protein and Tumour necrosis factor α, TNF-α), glucagon-like peptide-1 (GLP-1), homeostatic model assessment of insulin resistance (HOMA–IR), and fasting insulin. The biological mechanisms responsible for the outcomes observed in this review in relation to reduction in HbA1c and BMI may be based on the nutrient composition of almonds and the biological effects, including the high fibre content and the low glycaemic index profile. Conclusion: The findings of this systematic review and meta-analysis have shown that almond-based diets may be effective in promoting short-chain fatty acid-producing bacteria and lowering glycated haemoglobin and body mass index in patients with type 2 diabetes compared with control. However, the effects of almonds were not significant (p > 0.05) with respect to fasting blood glucose, 2 h postprandial blood glucose, inflammatory markers (C-reactive protein and TNF-α), GLP-1, HOMA–IR, and fasting insulin.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1905 ◽  
Author(s):  
Omorogieva Ojo ◽  
Sharon Marie Weldon ◽  
Trevor Thompson ◽  
Rachel Crockett ◽  
Xiao-Hua Wang

Background: The prevalence of diabetes is on the increase in the UK and worldwide, partly due to unhealthy lifestyles, including poor dietary regimes. Patients with diabetes and other co-morbidities such as stroke, which may affect swallowing ability and lead to malnutrition, could benefit from enteral nutrition, including the standard formula (SF) and diabetes-specific formulas (DSF). However, enteral nutrition presents its challenges due to its effect on glycaemic control and lipid profile. Aim: The aim of this review was to evaluate the effectiveness of diabetes-specific enteral nutrition formula versus SF in managing cardiometabolic parameters in patients with type 2 diabetes. Method: This review was conducted in accordance with the preferred reporting items for systematic reviews and meta-analyses. Three databases (Pubmed, EMBASE, PSYCInfo) and Google scholar were searched for relevant articles from inception to 2 January 2019 based on Population, Intervention, Comparator, Outcomes and Study designs (PICOS) framework. Key words, Medical Subject Heading (MeSH) terms, and Boolean operators (AND/OR) formed part of the search strategy. Articles were evaluated for quality and risks of bias. Results: Fourteen articles were included in the systematic review and five articles were selected for the meta-analysis. Based on the findings of the review and meta-analysis, two distinct areas were evident: the effect of DSF on blood glucose parameters and the effect of DSF on lipid profile. All fourteen studies included in the systematic review showed that DSF was effective in lowering blood glucose parameters in patients with type 2 diabetes compared with SF. The results of the meta-analysis confirmed the findings of the systematic review with respect to the fasting blood glucose, which was significantly lower (p = 0.01) in the DSF group compared to SF, with a mean difference of −1.15 (95% CI −2.07, −0.23) and glycated haemoglobin, which was significantly lower (p = 0.005) in the DSF group compared to the SF group following meta-analysis and sensitivity analysis. However, in relation to the sensitivity analysis for the fasting blood glucose, differences were not significant between the two groups when some of the studies were removed. Based on the systematic review, the outcomes of the studies selected to evaluate the effect of DSF on lipid profile were variable. Following the meta-analysis, no significant differences (p > 0.05) were found between the DSF and SF groups with respect to total cholesterol, LDL cholesterol and triglyceride. The level of the HDL cholesterol was significantly higher (p = 0.04) in the DSF group compared to the SF group after the intervention, with a mean difference of 0.09 (95% CI, 0.00, 0.18), although this was not consistent based on the sensitivity analysis. The presence of low glycaemic index (GI) carbohydrate, the lower amount of carbohydrate and the higher protein, the presence of mono-unsaturated fatty acids and the different amounts and types of fibre in the DSF compared with SF may be responsible for the observed differences in cardiometabolic parameters in both groups. Conclusion: The results provide evidence to suggest that DSF is effective in controlling fasting blood glucose and glycated haemoglobin and in increasing HDL cholesterol, but has no significant effect on other lipid parameters. However, our confidence in these findings would be increased by additional data from further studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zehua Chen ◽  
Xiangling Ye ◽  
Yubo Xia ◽  
Huiting Song ◽  
Yi Wang ◽  
...  

Objective: The benefits of Pilates for blood glucose and lipids remain unclear. The purpose of this study was to examine the effect of Pilates on their levels.Methods: Searches were conducted in five databases to identify relevant articles published until October 29, 2020. Paired reviewers independently screened the articles and extracted data from each included study. Meta-analysis was performed to assess the effects of Pilates on blood glucose and lipids. Subgroup analyses and sensitivity analyses were conducted to explore heterogeneity.Results: According to the inclusion and exclusion criteria, 15 randomized controlled trials (RCTs) comprising 587 participants were included in the study. Overall, the Pilates group (PG) had a significantly greater reduction in post-prandial blood glucose than the control group (CG) (MD = −22.25 mg/dL, 95% CI: [−28.34, 16.17] mg/dL, P &lt; 0.00001, I2 = 0%); glycated hemoglobin (HbA1c) (MD = −0.78%, 95% CI: [−1.13, −0.42]%, P &lt; 0.0001, I2 = 88%); total cholesterol (TC) (MD = −20.90 mg/dL, 95% CI: [−37.21, −4.60] mg/dL, P = 0.01, I2 = 84%); triglycerides (TG) (MD = −12.59 mg/dL, 95% CI: [−19.88, −5.29] mg/dL, P = 0.0007, I2 = 86%); and low density lipoprotein cholesterol (LDL-C) (MD = −12.39 mg/dL, 95% CI: [−16.82, −7.95] mg/dL, P &lt; 0.00001, I2 = 45%) compared to CG, whereas no significant difference was detected between the two groups in fasting blood glucose (MD = −7.04 mg/dL, 95% CI: [−17.26, 3.17] mg/dL, P = 0.18, I2 = 93%), insulin (MD = −1.44 μU/mL, 95% CI: [−4.30, 1.41] μU/mL, P = 0.32, I2 = 0%); and high density lipoprotein cholesterol (HDL-C) (MD = −2.68 mg/dL, 95% CI: [−9.03, 3.67] mg/dL, P = 0.41, I2 = 89%). However, by subgroup analysis, we found that compared to the CG, PG showed no significant improvement in blood glucose and lipids levels for non-diabetics, while it presented a significantly greater decrease in post-prandial blood glucose, TC, TG, and LDL-C for diabetic patients. Notably, for diabetic patients, Pilates and medication treatments showed no significant reduction in fasting blood glucose (MD = −7.00 mg/dL, 95% CI: [−26.06, 12.06] mg/dL, P = 0.40) and HbA1c (MD = −0.23%, 95% CI: [−0.58, 0.13]%, P = 0.21, I2 = 0%) than medications treatment used alone, and Pilates combined with medications and dietary treatments presented no significant improvement in fasting blood glucose than a combination of medications and dietary treatments (MD = −10.90 mg/dL, 95% CI: [−32.35, 10.54] mg/dL, P = 0.32, I2 = 94%).Conclusions: Overall, Pilates could improve post-prandial blood glucose, fasting blood glucose, HbA1c, TG, TC, and LDL-C for diabetic patients, which could be influenced by its duration and intensity. Moreover, it had no significant effect on blood glucose and lipids for non-diabetic individuals. However, Pilates, as an adjunctive treatment to medications was not superior to medications used alone in lowering fasting blood glucose and HbA1c. Furthermore, Pilates combined with medications and dietary treatments showed no significant improvement in fasting blood glucose, whereas it had a greater reduction in post-prandial blood glucose and HbA1c for diabetic patients.Systematic Review Registration:https://osf.io/xgv6w.


Author(s):  
Mohammad Mohammadi ◽  
Hamed Mohammadi ◽  
Ehsan Ghaedi ◽  
Nahid Ramezani-Jolfaie ◽  
Amin Salehi-Abargouei

Background: Although the results were conflicting, the Paleolithic diet (PD) was proposed to be effective in improvement of metabolic status. We aimed to conduct a systematic review and meta-analysis on the randomized controlled clinical trials (RCTs) evaluating the effects of PD on glycemic markers. Methods: Online databases such as PubMed, Scopus, Web of Science, and Google Scholar were searched up to December 2017 without any restrictions. The weighted mean difference (WMD) was also calculated using random effects model. Results: Eventually, eight good quality studies were included in the present systematic review and meta-analysis. The pooled analysis showed that although adherence to the PD led to reduction of fasting blood glucose (FBG) concentrations, it was no statistically significant (WMD = -0.31, 95% CI: -0.70, 0.07, P = 0.11). Moreover, compared with the control diets, the PD consumption did not significantly affect other glycemic markers such as 2-h post-prandial blood glucose (2h PBG), insulin, homeostasis model assessment for insulin resistance (HOMA-IR), and Hemoglobin A1c (HbA1c). Conclusions: Adherence to the PD had no significant effect on the glycemic markers, but reduction was observed in FBG levels. 


2020 ◽  
Vol 124 (7) ◽  
pp. 641-653 ◽  
Author(s):  
Elizabeth P. Neale ◽  
Vivienne Guan ◽  
Linda C. Tapsell ◽  
Yasmine C. Probst

AbstractType 2 diabetes mellitus is a chronic disease increasing in global prevalence. Although habitual consumption of walnuts is associated with reduced risk of CVD, there is inconsistent evidence for the impact of walnut consumption on markers of glycaemic control. This systematic review and meta-analysis aimed to examine the effect of walnut consumption on markers of blood glucose control. A systematic search of Medline, PubMed, CINAHL and Cochrane databases (to 2 March 2019) was conducted. Inclusion criteria were randomised controlled trials conducted with adults which assessed the effect of walnut consumption on fasting blood glucose and insulin, glycated Hb and homeostatic model assessment of insulin resistance. Random effects meta-analyses were conducted to assess the weighted mean differences (WMD) for each outcome. Risk of bias in studies was assessed using the Cochrane Risk of Bias tool 2.0. Sixteen studies providing eighteen effect sizes were included in the review. Consumption of walnuts did not result in significant changes in fasting blood glucose levels (WMD: 0·331 mg/dl; 95 % CI −0·817, 1·479) or other outcome measures. Studies were determined to have either ‘some concerns’ or be at ‘high risk’ of bias. There was no evidence of an effect of walnut consumption on markers of blood glucose control. These findings suggest that the known favourable effects of walnut intake on CVD are not mediated via improvements in glycaemic control. Given the high risk of bias observed in the current evidence base, there is a need for further high-quality randomised controlled trials.


2017 ◽  
Vol 6 ◽  
Author(s):  
Mary M. Murphy ◽  
Erin C. Barrett ◽  
Kara A. Bresnahan ◽  
Leila M. Barraj

AbstractStudies on the effects of consuming 100 % fruit juice on measures of glycaemic control are conflicting. The purpose of the present study was to systematically review and quantitatively summarise results from randomised controlled trials (RCT) examining effects of 100 % fruit juice on glucose–insulin homeostasis. Eligible studies were identified from a systematic review of PubMed and EMBASE and hand searches of reference lists from reviews and relevant papers. Using data from eighteen RCT, meta-analyses evaluated the mean difference in fasting blood glucose (sixteen studies), fasting blood insulin (eleven studies), the homeostatic model assessment of insulin resistance (HOMA-IR; seven studies) and glycosylated Hb (HbA1c; three studies) between the 100 % fruit juice intervention and control groups using a random-effects model. Compared with the control group, 100 % fruit juice had no significant effect on fasting blood glucose (−0·13 (95 % CI −0·28, 0·01) mmol/l; P = 0·07), fasting blood insulin (−0·24 (95 % CI −3·54, 3·05) pmol/l; P = 0·89), HOMA-IR (−0·22 (95 % CI −0·50, 0·06); P = 0·13) or HbA1c (−0·001 (95 % CI −0·38, 0·38) %; P = 0·28). Results from stratified analyses and univariate meta-regressions also largely showed no significant associations between 100 % fruit juice and the measures of glucose control. Overall, findings from this meta-analysis of RCT suggest a neutral effect of 100 % fruit juice on glycaemic control. These findings are consistent with findings from some observational studies suggesting that consumption of 100 % fruit juice is not associated with increased risk of diabetes.


Sign in / Sign up

Export Citation Format

Share Document