Temporal and spatial variations in nitrogen use efficiency of crop production in China

2021 ◽  
pp. 118496
Author(s):  
Xiaoyuan Yan ◽  
Longlong Xia ◽  
Chaopu Ti
2017 ◽  
Vol 3 (3) ◽  
pp. 413-434 ◽  
Author(s):  
Nilde Antonella Di Benedetto ◽  
◽  
Maria Rosaria Corbo ◽  
Daniela Campaniello ◽  
Mariagrazia Pia Cataldi ◽  
...  

Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 304 ◽  
Author(s):  
Jesús Santillano-Cázares ◽  
Fidel Núñez-Ramírez ◽  
Cristina Ruíz-Alvarado ◽  
María Cárdenas-Castañeda ◽  
Iván Ortiz-Monasterio

Sustainable crop production systems can be attained by using inputs efficiently and nitrogen use efficiency (NUE) parameters are indirect measurements of sustainability of production systems. The objective of this study was to investigate the effect of selected nitrogen (N) management treatments on wheat yields, grain and straw N concentration, and NUE parameters, under conservation agriculture (CA). The present study was conducted at the International Maize and Wheat Improvement Center (CIMMYT), in northwest, Mexico. Seventeen treatments were tested which included urea sources, timing, and methods of fertilizer application. Orthogonal contrasts were used to compare groups of treatments and correlation and regression analyses were used to look at the relationships between wheat yields and NUE parameters. Contrasts run to compare wheat yields or agronomic efficiency of N (AEN) performed similarly. Sources of urea or timing of fertilizer application had a significant effect on yields or AEN (p > 0.050). However, methods of application resulted in a highly significant (p < 0.0001) difference on wheat yields and agronomic efficiency of N. NUE parameters recorded in this study were average but the productivity associated to NUE levels was high. Results in this study indicate that wheat grew under non-critically limiting N supply levels, suggesting that N mineralization and reduced N losses from the soil under CA contributed to this favorable nutritional condition, thus minimizing the importance of N management practices under stable, mature CA systems.


2021 ◽  
Vol 758 ◽  
pp. 143602
Author(s):  
Matthew Langholtz ◽  
Brian H. Davison ◽  
Henriette I. Jager ◽  
Laurence Eaton ◽  
Latha M. Baskaran ◽  
...  

Author(s):  
Lucie Chmelíková ◽  
Harald Schmid ◽  
Sandra Anke ◽  
Kurt-Jürgen Hülsbergen

AbstractOptimising nitrogen (N) management improves soil fertility and reduces negative environmental impacts. Mineral N fertilizers are of key importance in intensive conventional farming (CF). In contrast, organic farming (OF) is highly dependent on closed nutrient cycles, biological N fixation and crop rotations. However, both systems need to minimise N balances and maximise nitrogen-use efficiency (NUE). NUE of organic and conventional crop production systems was evaluated in three regions in Germany by analysing N input, N output and N balance of 30 pairs of one OF and one CF farm each from the network of pilot farms for the period 2009–2011; indicators were calculated using the farm management system REPRO. CF had higher N input in all farm pairs. In 90% of the comparisons, N output of CF was higher than OF, in 7% it was the same and in 3% lower. NUE was higher in 60% of the OF, the same in 37% and lower in only 3%. The NUE of crop production in OF was 91% (arable farms: 83%; mixed/dairy farms: 95%) and the NUE in CF was 79% (arable farms: 77%; dairy farms: 80%). N balance was lower in 90% of the OF. The yearly average N balance was four times higher in CF (59 kg N ha−1 a−1) than in OF (15 kg N ha−1 a−1). The results show a huge individual variability within OF and CF. Organic mixed/dairy farms had the lowest N balances and the highest NUE. A further expansion of OF area can help to reduce high N balances and increase the NUE of crop production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nitika Sandhu ◽  
Mehak Sethi ◽  
Aman Kumar ◽  
Devpriya Dang ◽  
Jasneet Singh ◽  
...  

Nitrogen is an essential nutrient required in large quantities for the proper growth and development of plants. Nitrogen is the most limiting macronutrient for crop production in most of the world’s agricultural areas. The dynamic nature of nitrogen and its tendency to lose soil and environment systems create a unique and challenging environment for its proper management. Exploiting genetic diversity, developing nutrient efficient novel varieties with better agronomy and crop management practices combined with improved crop genetics have been significant factors behind increased crop production. In this review, we highlight the various biochemical, genetic factors and the regulatory mechanisms controlling the plant nitrogen economy necessary for reducing fertilizer cost and improving nitrogen use efficiency while maintaining an acceptable grain yield.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 217
Author(s):  
Anamaria Mălinaş ◽  
Roxana Vidican ◽  
Ioan Rotar ◽  
Cristian Mălinaş ◽  
Cristina Maria Moldovan ◽  
...  

Although essential for achieving high crop yields required for the growing population worldwide, nitrogen, (N) in large amounts, along with its inefficient use, results in environmental pollution and increased greenhouse gas (GHG) emissions. Therefore, improved nitrogen use efficiency (NUE) has a significant role to play in the development of more sustainable crop production systems. Considering that wheat is one of the major crops cultivated in the world and contributes in high amounts to the large N footprint, designing sustainable wheat crop patterns, briefly defined by us in this review as the 3 Qs (high quantity, good quality and the quintessence of natural environment health) is urgently required. There are numerous indices used to benchmark N management for a specific crop, including wheat, but the misunderstanding of their specific functions could result in an under/overestimation of crop NUE. Thus, a better understanding of N dynamics in relation to wheat N cycling can enhance a higher efficiency of N use. In this sense, the aim of our review is to provide a critical analysis on the current knowledge with respect to wheat NUE. Further, considering the key traits involved in N uptake, assimilation, distribution and utilization efficiency, as well as genetics (G), environment (E) and management (M) interactions, we suggest a series of future perspectives that can enhance a better efficiency of N in wheat.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 662 ◽  
Author(s):  
Sakura D. Karunarathne ◽  
Yong Han ◽  
Xiao-Qi Zhang ◽  
Chengdao Li

Nitrogen (N) fertilization plays an important role in crop production; however, excessive and inefficient use of N fertilizer is a global issue that incurs high production costs, pollutes the environment and increases the emission of greenhouse gases. To overcome these negative consequences, improving nitrogen use efficiency (NUE) would be a key factor for profitable crop production either by increasing yield or reducing fertilizer cost. In contrast to soil and crop management practices, understanding the molecular mechanisms in NUE and developing new varieties with improved NUE is more environmentally and economically friendly. In this review, we highlight the recent progress in understanding and improving nitrogen use efficiency in barley, with perspectives on the impact of N on plant morphology and agronomic performance, NUE and its components such as N uptake and utilization, QTLs and candidate genes controlling NUE, and new strategies for NUE improvement.


Sign in / Sign up

Export Citation Format

Share Document