Contributions of regional air pollutant emissions to ozone and fine particulate matter-related mortalities in eastern U.S. urban areas

2015 ◽  
Vol 137 ◽  
pp. 475-484 ◽  
Author(s):  
Xiangting Hou ◽  
Matthew J. Strickland ◽  
Kuo-Jen Liao
2020 ◽  
Vol 117 (32) ◽  
pp. 18984-18990 ◽  
Author(s):  
Zander S. Venter ◽  
Kristin Aunan ◽  
Sourangsu Chowdhury ◽  
Jos Lelieveld

The lockdown response to coronavirus disease 2019 (COVID-19) has caused an unprecedented reduction in global economic and transport activity. We test the hypothesis that this has reduced tropospheric and ground-level air pollution concentrations, using satellite data and a network of >10,000 air quality stations. After accounting for the effects of meteorological variability, we find declines in the population-weighted concentration of ground-level nitrogen dioxide (NO2: 60% with 95% CI 48 to 72%), and fine particulate matter (PM2.5: 31%; 95% CI: 17 to 45%), with marginal increases in ozone (O3: 4%; 95% CI: −2 to 10%) in 34 countries during lockdown dates up until 15 May. Except for ozone, satellite measurements of the troposphere indicate much smaller reductions, highlighting the spatial variability of pollutant anomalies attributable to complex NOxchemistry and long-distance transport of fine particulate matter with a diameter less than 2.5 µm (PM2.5). By leveraging Google and Apple mobility data, we find empirical evidence for a link between global vehicle transportation declines and the reduction of ambient NO2exposure. While the state of global lockdown is not sustainable, these findings allude to the potential for mitigating public health risk by reducing “business as usual” air pollutant emissions from economic activities. Explore trends here:https://nina.earthengine.app/view/lockdown-pollution.


2012 ◽  
Vol 12 (14) ◽  
pp. 6335-6355 ◽  
Author(s):  
U. Im ◽  
M. Kanakidou

Abstract. Megacities are large urban agglomerations with intensive anthropogenic emissions that have significant impacts on local and regional air quality. In the present mesoscale modeling study, the impacts of anthropogenic emissions from the Greater Istanbul Area (GIA) and the Greater Athens Area (GAA) on the air quality in GIA, GAA and the entire East Mediterranean are quantified for typical wintertime (December 2008) and summertime (July 2008) conditions. They are compared to those of the regional anthropogenic and biogenic emissions that are also calculated. Finally, the efficiency of potential country-based emissions mitigation in improving air quality is investigated. The results show that relative contributions from both cities to surface ozone (O3) and aerosol levels in the cities' extended areas are generally higher in winter than in summer. Anthropogenic emissions from GIA depress surface O3 in the GIA by ~ 60% in winter and ~ 20% in summer while those from GAA reduce the surface O3 in the GAA by 30% in winter and by 8% in summer. GIA and GAA anthropogenic emissions contribute to the fine particulate matter (PM2.5) levels inside the cities themselves by up to 75% in winter and by 50% (GIA) and ~ 40% (GAA), in summer. GIA anthropogenic emissions have larger impacts on the domain-mean surface O3 (up to 1%) and PM2.5 (4%) levels compared to GAA anthropogenic emissions (<1% for O3 and ≤2% for PM2.5) in both seasons. Impacts of regional anthropogenic emissions on the domain-mean surface pollutant levels (up to 17% for summertime O3 and 52% for wintertime fine particulate matter, PM2.5) are much higher than those from Istanbul and Athens together (~ 1% for O3 and ~ 6% for PM2.5, respectively). Regional biogenic emissions are found to limit the production of secondary inorganic aerosol species in summer up to 13% (non-sea-salt sulfate (nss-SO42−) in rural Athens) due to their impact on oxidant levels while they have negligible impact in winter. Finally, the responses to country-based anthropogenic emission mitigation scenarios inside the studied region show increases in O3 mixing ratios in the urban areas of GIA and GAA, higher in winter (~ 13% for GIA and 2% for GAA) than in summer (~ 7% for GIA and <1% for GAA). On the opposite PM2.5 concentrations decrease by up to 30% in GIA and by 20% in GAA with the highest improvements computed for winter. The emission reduction strategy also leads to domain-wide decreases in most primary pollutants like carbon monoxide (CO) or nitrogen oxides (NOx) for both seasons. The results show the importance of long range transport of pollutants for the air quality in the East Mediterranean. Thus, improvements of air quality in the East Mediterranean require coordinated efforts inside the region and beyond.


Author(s):  
Zhanyong Wang ◽  
Hong-Di He ◽  
Feng Lu ◽  
Qing-Chang Lu ◽  
Zhong-Ren Peng

Air quality time series near road intersections consist of complex linear and nonlinear patterns and are difficult to forecast. The backpropagation neural network (BPNN) has been applied for air quality forecasting in urban areas, but it has limited accuracy because of the inability to predict extreme events. This study proposed a novel hybrid model called GAWNN that combines a genetic algorithm and a wavelet neural network to improve forecast accuracy. The proposed model was examined through predicting the carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations near a road intersection. Before the predictions, principal component analysis was adopted to generate principal components as input variables to reduce data complexity and collinearity. Then the GAWNN model and the BPNN model were implemented. The comparative results indicated that GAWNN provided more reliable and accurate predictions of CO and PM2.5 concentrations. The results also showed that GAWNN performed better than BPNN did in the capability of forecasting extreme concentrations. Furthermore, the spatial transferability of the GAWNN model was reasonably good despite a degenerated performance caused by the unavoidable difference between the training and test sites. These findings demonstrate the potential of the application of the proposed model to forecast the fine-scale trend of air pollution in the vicinity of a road intersection.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ramachandran Prasannavenkatesh ◽  
Ramachandran Andimuthu ◽  
Palanivelu Kandasamy ◽  
Geetha Rajadurai ◽  
Divya Subash Kumar ◽  
...  

Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 151
Author(s):  
Sun Kyoung Park

Rapid industrialization of Korea’s economy has brought with it environmental pollution that threatens human health. Among various other pollutants, ambient fine particulate matter known to endanger human health often exceeds air quality standards in Seoul, South Korea’s capital. The goal of this research is to find the impact of meteorological extremes and particle levels on human health. The analysis was conducted using hourly air pollutant concentrations, meteorological variables, and the daily mortality from cerebrovascular disease. Results show that the effect of fine particulate matter on mortality from cerebrovascular disease was more noticeable during meteorological extremes. The linkage between extreme weather conditions and mortality was more apparent in winter than in summer. Comprehensive studies of various causes of diseases should be continued to more accurately analyze the effects of fine particulate matter on human health and meteorological extremes, and to further minimize the public health impact of air pollution and meteorological conditions.


Author(s):  
Yusuf Aina ◽  
Elhadi Adam ◽  
Fethi Ahmed

The study of the concentrations and effects of fine particulate matter in urban areas have been of great interest to researchers in recent times. This is due to the acknowledgment of the far-reaching impacts of fine particulate matter on public health. Remote sensing data have been used to monitor the trend of concentrations of particulate matter by deriving aerosol optical depth (AOD) from satellite images. The Center for International Earth Science Information Network (CIESIN) has released the second version of its global PM2.5 data with improvement in spatial resolution. This paper revisits the study of spatial and temporal variations in particulate matter in Saudi Arabia by exploring the cluster analysis of the new data. Cluster analysis of the PM2.5 values of Saudi cities is performed by using Anselin local Moran&rsquo;s I statistic. Also, the analysis is carried out at the regional level by using self-organizing map (SOM). The results show an increasing trend in the concentrations of particulate matter in Saudi Arabia, especially in some selected urban areas. The eastern and south-western parts of the Kingdom have significantly clustering high values. Some of the PM2.5 values have passed the threshold indicated by the World Health Organization (WHO) standard and targets posing health risks to Saudi urban population.


2019 ◽  
Author(s):  
Jaakko Kukkonen ◽  
Mikko Savolahti ◽  
Yuliia Palamarchuk ◽  
Timo Lanki ◽  
Väinö Nurmi ◽  
...  

Abstract. We have developed an integrated tool of assessment that can be used for evaluating the public health costs caused by the concentrations of fine particulate matter (PM2.5) in ambient air. The model can be used in assessing the impacts of various alternative air quality abatement measures, policies and strategies. The model has been applied for the evaluation of the costs of the domestic emissions that influence the concentrations of PM2.5 in Finland in 2015. The model includes the impacts on human health; however, it does not address the impacts on climate change or the state of the environment. First, the national Finnish emissions were evaluated using the Finnish Regional Emission Scenarios model (FRES) on a resolution of 250 × 250 m2 for the whole of Finland. Second, the atmospheric dispersion was analyzed by using the chemical transport model SILAM and the source-receptor matrices contained in the FRES model. Third, the health impacts were assessed by combining the spatially resolved concentration and population datasets, and by analyzing the impacts for various health outcomes. Fourth, the economic impacts for the health outcomes were evaluated. The model can be used to evaluate the costs of the health damages for various emission source categories, for a unit of emissions of PM2.5. It was found that economically the most effective measures would be the reduction of the emissions in urban areas of (i) road transport, (ii) non-road vehicles and machinery, and (iii) residential wood combustion. The reduction of the precursor emissions of PM2.5 was clearly less effective, compared with reducing directly the emissions of PM2.5. We have also designed a user-friendly web-based tool of assessment that is available open access.


Sign in / Sign up

Export Citation Format

Share Document