A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium

2013 ◽  
Vol 52 (1) ◽  
pp. 20-25 ◽  
Author(s):  
P. Satyamurthy ◽  
N. Vigneshwaran
2010 ◽  
Vol 9 (11) ◽  
pp. 1650-1660 ◽  
Author(s):  
Encarnación Dueñas-Santero ◽  
Ana Belén Martín-Cuadrado ◽  
Thierry Fontaine ◽  
Jean-Paul Latgé ◽  
Francisco del Rey ◽  
...  

ABSTRACT In yeast, enzymes with β-glucanase activity are thought to be necessary in morphogenetic events that require controlled hydrolysis of the cell wall. Comparison of the sequence of the Saccharomyces cerevisiae exo-β(1,3)-glucanase Exg1 with the Schizosaccharomyces pombe genome allowed the identification of three genes that were named exg1 + (locus SPBC1105.05), exg2 + (SPAC12B10.11), and exg3 + (SPBC2D10.05). The three proteins have different localizations: Exg1 is secreted to the periplasmic space, Exg2 is a membrane protein, and Exg3 is a cytoplasmic protein. Characterization of the biochemical activity of the proteins indicated that Exg1 and Exg3 are active only against β(1,6)-glucans while no activity was detected for Exg2. Interestingly, Exg1 cleaves the glucans with an endohydrolytic mode of action. exg1 + showed periodic expression during the cell cycle, with a maximum coinciding with the septation process, and its expression was dependent on the transcription factor Sep1. The Exg1 protein localizes to the septum region in a pattern that was different from that of the endo-β(1,3)-glucanase Eng1. Overexpression of Exg2 resulted in an increase in cell wall material at the poles and in the septum, but the putative catalytic activity of the protein was not required for this effect.


2013 ◽  
Vol 750-752 ◽  
pp. 1626-1629
Author(s):  
Bo Yuan ◽  
Ying Wang ◽  
Ying Chao Ji ◽  
Qiu Hong Wang

In this paper, plasma acid was obtained by treating distilled water with dielectric barrier discharge at atmospheric pressure in order to hydrolyze cellulose. The acidity of plasma acid was studied through a single factor experiment. A plasma acid with pH value of 1.42 was obtained and used to hydrolyze microcrystalline cellulose at 80°C for 60min. Under this condition, the integrated optical density (IOD) of the hydrolysis sample was 0.589. Based on standard glucose curve, the total reducing sugar (TRS) was calculated to be 53.75mg and the TRS yield was 53.75%. The filtrate was evaporated to get the solid hydrolysis sample to be analyzed by High-performance liquid chromatography (HPLC). The results showed that the sample mainly consisted of glucose, which proved that microcrystalline cellulose could be hydrolyzed by plasma acid. Therefore, it could be concluded that it was an environmentally friendly and economical method to hydrolyze the microcrystalline cellulose by plasma acid.


1988 ◽  
Vol 255 (3) ◽  
pp. 895-899 ◽  
Author(s):  
J Woodward ◽  
M Lima ◽  
N E Lee

Microcrystalline cellulose (10 mg of Avicel/ml) was hydrolysed to glucose by different concentrations of the purified cellulase components endoglucanase (EG) II and cellobiohydrolases (CBH) I and II, alone and in combination with each other, in the presence of excess beta-glucosidase. At a concentration of 360 micrograms/ml (160 micrograms of EG II/ml, 100 micrograms of CBH I/ml and 100 micrograms of CBH II/ml) the degree of synergism among them was negligible. As the concentration of cellulase decreased, the degree of synergism increased, reaching an optimum at 20 micrograms/ml (5 micrograms of EG II/ml, 10 micrograms of CBH I/ml and 5 micrograms of CBH II/ml). There was no apparent relationship between the ratio of the components and the degree of synergism. The latter is probably due, though it could not be proved, to the level of saturation of the substrate with each component. Inhibition of Avicel hydrolysis was observed when the substrate was incubated with saturating and nonsaturating concentrations of a mixture of EG II and CBH I respectively. A similar result was also observed with a combination of EG I and EG II.


2011 ◽  
Vol 54 (3) ◽  
pp. 305-310 ◽  
Author(s):  
Guillaume Pierre ◽  
Frédéric Sannier ◽  
Romain Goude ◽  
Armelle Nouviaire ◽  
Zoulikha Maache-Rezzoug ◽  
...  

Author(s):  
Alexander I. Sizov ◽  
◽  
Sergey D. Pimenov ◽  
Anastasia D. Stroiteleva ◽  
Katherine D. Stroiteleva ◽  
...  

One of the main consumers of microcrystalline cellulose (MCC) is the pharmaceutical industry, where MCC is used as a binder and filler in direct compression of tablets. MCC is produced by acidic hydrolysis of cellulose, which usually results in a decrease in whiteness. This is due to the destruction of sugars formed during hydrolysis and the subsequent formation of colored products. The composition and properties of these products depend on the method of hydrolysis, acid concentration, temperature, and process duration. One of the most promising methods for producing MCC is gas-phase hydrolysis of cellulose with hydrogen chloride gas-air mixtures. The method has a high rate of hydrolysis, low reagent and energy consumption. The requirements of the pharmaceutical industry determine the need to produce MCC with high whiteness. The research purpose is to select bleaching modes for MCC using sodium hypochlorite and hydrogen peroxide as bleaching agents. MCC produced by gas-phase hydrolysis of bleached wood pulp was used during the study. The whiteness and intensity of the yellow tint of MCC in the bleaching process were determined by digital colorimetry on a flatbed scanner. The paper shows that sodium hypochlorite and hydrogen peroxide allow achieving the whiteness not less than 90 % and the intensity of the yellow tint not more than 3 standard units. High-quality bleaching can be carried out even for MCC samples with an initial whiteness of about 40 %. The most effective bleaching agent is sodium hypochlorite when the pH of the bleaching solution is 2–3. Hydrogen peroxide also provides high whiteness of MCC at pH of 10–11. However, the consumption of active oxygen (AO) for bleaching is more than three times higher in comparison with the consumption of active chlorine (ACh). It was found that the dyes of MCC produced by gas-phase hydrolysis consist of two chromophore groups that decolorize at different rates. The easily oxidized group of components makes up about 90 % of the total amount of dyes, and the resistant to oxidation components make up about 10 % and determine the intensity of the yellow tint of MCC. The modes of bleaching MCC with sodium hypochlorite and hydrogen peroxide to product samples with whiteness comparable to that of imported samples were determined. For citation: Sizov A.I., Pimenov S.D., Stroiteleva A.D., Stroiteleva K.D. Bleaching of Microcrystalline Cellulose Produced by Gas-Phase Hydrolysis. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 6, pp. 173–183. DOI: 10.37482/0536-1036-2021-6-173-183


2018 ◽  
Vol 5 (4) ◽  
Author(s):  
Caio C. Aragon ◽  
Ana I. Ruiz-Matute ◽  
Nieves Corzo ◽  
Rubens Monti ◽  
Jose M. Guisán ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 200-205
Author(s):  
Maryam Husin ◽  
Nurnadiah Rahim ◽  
Mohd Radzi Ahmad ◽  
Ahmad Zafir Romli ◽  
Zul Ilham

The waste seeds of Leucaena leucocephala (LLS) used in this study were unused residues obtained after oil and polysaccharides extraction. The microcrystalline cellulose (MCC) was isolated from LLS by acid treatment. MCC produced was, then, further converted to glucose by using sulphuric acid at 121 °C by varying the acid concentration and reaction time. The sugar composition was analyzed by using the phenol-sulfuric acid method and pre-column derivatization HPLC technique. The yield of glucose ranging from 70–85% could be obtained from MCC hydrolyzates, depending on the hydrolysis factors, which corresponding to around 57-75% of the percentage conversion of MCC to glucose.Cellulose isolated from LLS was, therefore, potentially suitable to be utilized in liquid biofuels and other value-added chemicals such as bioethanol, 5-hydroxymethylfurfural(HMF), and levulinic acid.


Sign in / Sign up

Export Citation Format

Share Document