scholarly journals Pervasive seismic low-velocity zones within stagnant plates in the mantle transition zone: Thermal or compositional origin?

2017 ◽  
Vol 477 ◽  
pp. 1-13 ◽  
Author(s):  
B. Tauzin ◽  
S. Kim ◽  
B.L.N. Kennett
2020 ◽  
Author(s):  
Jianfeng Yang ◽  
Manuele Faccenda

<p>Most magmatism occurring on Earth is conventionally attributed to passive mantle upwelling at mid-ocean ridges, slab devolatilization at subduction zones, and mantle plumes. However, the widespread Cenozoic intraplate volcanism in northeast China and the peculiar petit-spot volcanoes offshore the Japan trench cannot be readily associated with any of these mechanisms. Furthermore, the seismic tomography images show remarkable low velocity zones (LVZs) sit above and below the mantle transition zone which are coincidently corresponding to the volcanism. Here we show that most if not all the intraplate/petit-spot volcanism and LVZs present around the Japanese subduction zone can be explained by the Cenozoic interaction of the subducting Pacific slab with a hydrous transition zone. Numerical modelling results indicate that 0.2-0.3 wt.% H<sub>2</sub>O dissolved in mantle minerals which are driven out from the transition zone in response to subduction and retreat of a stagnant plate is sufficient to reproduce the observations. This suggests that critical amounts of volatiles accumulated in the mantle transition zone due to past subduction episodes and/or delamination of volatile-rich lithosphere could generate abundant dynamics triggered by recent subduction event. This model is probably also applicable to the circum-Mediterranean and Turkish-Iranian Plateau regions characterized by intraplate/petit-spot volcanism and LVZs in the underlying mantle.</p>


2014 ◽  
Vol 41 (3) ◽  
pp. 836-842 ◽  
Author(s):  
Xuzhang Shen ◽  
Xiaohui Yuan ◽  
Xueqing Li

2020 ◽  
Vol 10 (13) ◽  
pp. 4557
Author(s):  
Zhuo Jia ◽  
Gongbo Zhang

Tomographic imaging technology is a geophysical inversion method. According to the ray scanning, this method carries on the inversion calculation to the obtained information, and reconstructs the image of the parameter distribution rule of elastic wave and electromagnetic wave in the measured range, so as to delineate the structure of the geological body. In this paper, teleseismic tomography is applied by using seismic travel time data to constrain layered crustal structure where Fast Marching Methods (FMM) and the subspace method are considered as forward and inverse methods, respectively. Based on the travel time data picked up from seismic waveform data in the study region, the P-wave velocity structure beneath Northeast China down to 750 km is obtained. It can be seen that there are low-velocity anomalies penetrating the mantle transition zone under the Changbai volcano group, Jingpohu Volcano, and Arshan Volcano, and these low-velocity anomalies extend to the shallow part. In this paper, it is suggested that the Cenozoic volcanoes in Northeast China were heated by the heat source provided by the dehydration of the subducted Pacific plate and the upwelling of geothermal matter in the lower mantle. The low-velocity anomaly in the north Songliao basin does not penetrate the mantle transition zone, which may be related to mantle convection and basin delamination. According to the low-velocity anomalies widely distributed in the upper mantle and the low-velocity bodies passing through the mantle transition zone beneath the volcanoes, this study suggests that the Cenozoic volcanoes in Northeast China are kindred and have a common formation mechanism.


Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 327-337 ◽  
Author(s):  
C. Haldar ◽  
P. Kumar ◽  
M. Ravi Kumar

Abstract. Deciphering the seismic character of the young lithosphere near mid-oceanic ridges (MORs) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs using the P-to-S conversions isolated from quality data recorded at five broadband seismological stations situated on ocean islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform inversion of the P-receiver function stacks at individual stations reveal that the Moho depth varies between ~ 10 ± 1 km and ~ 20 ± 1 km with the depths of the lithosphere–asthenosphere boundary (LAB) varying between ~ 40 ± 4 and ~ 65 ± 7 km. We found evidence for an additional low-velocity layer below the expected LAB depths at stations on Ascension, São Jorge and Easter islands. The layer probably relates to the presence of a hot spot corresponding to a magma chamber. Further, thinning of the upper mantle transition zone suggests a hotter mantle transition zone due to the possible presence of plumes in the mantle beneath the stations.


Geology ◽  
2020 ◽  
Vol 48 (7) ◽  
pp. 748-752
Author(s):  
Erica L. Emry ◽  
Andrew A. Nyblade ◽  
Alan Horton ◽  
Samantha E. Hansen ◽  
Jordi Julià ◽  
...  

Abstract The Transantarctic Mountains (TAMs), Antarctica, exhibit anomalous uplift and volcanism and have been associated with regions of thermally perturbed upper mantle that may or may not be connected to lower mantle processes. To determine if the anomalous upper mantle beneath the TAMs connects to the lower mantle, we interrogate the mantle transition zone (MTZ) structure under the TAMs and adjacent parts of East Antarctica using 12,500+ detections of P-to-S conversions from the 410 and 660 km discontinuities. Our results show distinct zones of thinner-than-global-average MTZ (∼205–225 km, ∼10%–18% thinner) beneath the central TAMs and southern Victoria Land, revealing throughgoing convective thermal anomalies (i.e., mantle plumes) that connect prominent upper and lower mantle low-velocity regions. This suggests that the thermally perturbed upper mantle beneath the TAMs and Ross Island may have a lower mantle origin, which could influence patterns of volcanism and TAMs uplift.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 505 ◽  
Author(s):  
Ilya Fomin ◽  
Christian Schiffer

Recent geophysical and petrological observations indicate the presence of water and hydrous melts in and around the mantle transition zone (MTZ), for example, prominent low-velocity zones detected by seismological methods. Experimental data and computational predictions describe the influence of water on elastic properties of mantle minerals. Using thermodynamic relationships and published databases, we calculated seismic velocities and densities of mantle rocks in and around the MTZ in the presence of water for a plausible range of mantle potential temperatures. We then computed synthetic receiver functions to explore the influence of different water distribution patterns on the teleseismic signature. The results may improve our understanding and interpretation of seismic observations of the MTZ.


2019 ◽  
Vol 109 (4) ◽  
pp. 1181-1193 ◽  
Author(s):  
Guohui Li ◽  
Yunyue Elita Li ◽  
Heng Zhang ◽  
Ling Bai ◽  
Lin Ding ◽  
...  

Abstract Triplicated P waveforms related to the 410‐km discontinuity from five intermediate‐depth earthquakes in the central Philippines are clearly recorded by the Chinese Digital Seismic Network, but some branches of the S‐wave triplications are obscure. Matching the observed P‐wave triplications with synthetics through a grid‐search technique, we obtain the best‐fit 1D P‐wave velocity model near the 410‐km discontinuity beneath the northeastern South China Sea. In such a model, a low‐velocity layer (LVL) is found to reside atop the mantle transition zone, and it is characterized by a thickness of 92.5±11.5  km and a P‐wave velocity decrement of 1.5%±0.1% compared with the IASP91 model. The relatively thick and weak LVL is possibly a response of a small amount of remnant hydrous partial melts after plume‐like upwelling.


Sign in / Sign up

Export Citation Format

Share Document