A new optimal energy storage system model for wind power producers based on long short term memory and Coot Bird Search Algorithm

2021 ◽  
Vol 44 ◽  
pp. 103401
Author(s):  
Gholamreza Memarzadeh ◽  
Farshid Keynia
Energy ◽  
2019 ◽  
Vol 189 ◽  
pp. 116300 ◽  
Author(s):  
Li Han ◽  
Huitian Jing ◽  
Rongchang Zhang ◽  
Zhiyu Gao

2020 ◽  
Vol 34 (36) ◽  
pp. 2050418
Author(s):  
Ravneet Kaur Sidhu ◽  
Ravinder Kumar ◽  
Prashant Singh Rana

Rice is a staple food crop around the world, and its demand is likely to rise significantly with growth in population. Increasing rice productivity and production largely depends on the availability of irrigation water. Thus, the efficient application of irrigation water such that the crop doesn’t experience moisture stress is of utmost importance. In the present study, a long short-term memory (LSTM)-based neural network with logistic regression has been used to predict the daily irrigation schedule of drip-irrigated rice. The correlation threshold of 0.75 was used for the selection of features, which helped in limiting the number of input parameters. Also, a dataset based on the recommendation of a domain expert, and another used by the tool Agricultural Production Systems Simulator (APSIM) was used for comparison. Field data comprising of weather station data and past irrigation schedules has been used to train the model. Grid search algorithm has been used to optimize the hyperparameters of the model. Nested cross-validation has been used for validating the results. The results show that the correlation-based selected dataset is as effective as the domain expert-recommended dataset in predicting the water requirement using LSTM as the base model. The models were evaluated on different parameters and a multi-criteria decision evaluation (Technique for Order of Preference by Similarity to Ideal Solution [TOPSIS]) was used to find the best performing.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3901 ◽  
Author(s):  
Namrye Son ◽  
Seunghak Yang ◽  
Jeongseung Na

Renewable energy has recently gained considerable attention. In particular, the interest in wind energy is rapidly growing globally. However, the characteristics of instability and volatility in wind energy systems also affect power systems significantly. To address these issues, many studies have been carried out to predict wind speed and power. Methods of predicting wind energy are divided into four categories: physical methods, statistical methods, artificial intelligence methods, and hybrid methods. In this study, we proposed a hybrid model using modified LSTM (Long short-term Memory) to predict short-term wind power. The data adopted by modified LSTM use the current observation data (wind power, wind direction, and wind speed) rather than previous data, which are prediction factors of wind power. The performance of modified LSTM was compared among four multivariate models, which are derived from combining the current observation data. Among multivariable models, the proposed hybrid method showed good performance in the initial stage with Model 1 (wind power) and excellent performance in the middle to late stages with Model 3 (wind power, wind speed) in the estimation of short-term wind power. The experiment results showed that the proposed model is more robust and accurate in forecasting short-term wind power than the other models.


Sign in / Sign up

Export Citation Format

Share Document