Simulation for influence of Y-shape fin on phase change of paraffin inside triplex pipe with using Al2O3 nanoparticles

2022 ◽  
Vol 46 ◽  
pp. 103878
Author(s):  
Haiwei Yang ◽  
Yahya Ali Rothan ◽  
Saad Althobaiti ◽  
Mahmoud M. Selim
2020 ◽  
Vol 10 (3) ◽  
pp. 5814-5818
Author(s):  
M. A. Aichouni ◽  
N. F. Alshammari ◽  
N. Ben Khedher ◽  
M. Aichouni

The intermittent nature of renewable energy sources such as solar and wind necessitates integration with energy-storage units to enable realistic applications. In this study, thermal performance enhancement of the finned Cylindrical Thermal Energy Storage (C-TES) with nano-enhanced Phase Change Material (PCM) integrated with the water heating system under Storage, Charging and Discharging (SCD) conditions were investigated experimentally. The effects of the addition of copper oxide (CuO) and aluminum oxide (Al2O3) nanoparticles in PCM on thermal conductivity, specific heat, and on charging and discharging performance rates were theoretically and experimentally investigated and studied in detail. The experimental apparatus utilized paraffin wax as PCM, which was filled in Finned C-TES to conduct the experiments. The experimental results showed a positive improvement compared with the non-nano additive PCM. The significance and originality of this project lies within the evaluation and identification of preferable metal-oxides with higher potential for improving thermal performance.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 284 ◽  
Author(s):  
Nadezhda S. Bondareva ◽  
Nikita S. Gibanov ◽  
Mikhail A. Sheremet

The cooling of electronic elements is one of the most important problems in the development of architecture in electronic technology. One promising developing cooling method is heat sinks based on the phase change materials (PCMs) enhanced by nano-sized solid particles. In this paper, the influence of the PCM’s physical properties and the concentration of nanoparticles on heat and mass transfer inside a closed radiator with fins, in the presence of a source of constant volumetric heat generation, is analyzed. The conjugate problem of nano-enhanced phase change materials (NePCMs) melting is considered, taking into account natural convection in the melt under the impact of the external convective cooling. A two-dimensional problem is formulated in the non-primitive variables, such as stream function and vorticity. A single-phase nano-liquid model is employed to describe the transport within NePCMs.


Author(s):  
Hamza Faraji ◽  
Mustapha El Alami ◽  
Adeel Arshad ◽  
Yassine Hariti

Abstract This paper reports on numerical simulations of passive cooling of an electronic component. The strategy is based on the fusion of a nano-enhanced phase change material (NePCM) by insertion of hybrid Cu-Al2O3 nanoparticles. This study analyses the combined effects of the position of the electronic component and the inclination of the heat sink for rectangular and square geometries on the heat transfer and flow structure of liquid NePCM. The heat sink is heated by a protuberant heat source simulating the role of an electronic component generating a volumetric power. The electronic component is mounted on a substrate modelling the role of a motherboard. All the walls of the heat sink are adiabatic. The development of a 2D mathematical model is based on the equations of conservation of mass, momentum and energy. This system of equations is solved using the finite volume method and the SIMPLE algorithm for velocity-pressure coupling. The enthalpy-porosity approach is adopted to model the phase change. The results obtained show that the position of the electronic component and the inclination of the enclosure have important effects on the efficiency of the cooling strategy. The inclination of 900 and the position of d=0.5 represent the case where the cooling of the electronic component is guaranteed and operates safely with a minimum temperature difference recorded along it. The electronic component is well cooled in a rectangular heat sink than in a square one.


Author(s):  
Rohit Kothari ◽  
Dattaraj V. Vaidya ◽  
Vinay Shelke ◽  
Santosh K. Sahu ◽  
Shailesh I. Kundalwal

Abstract Present experimental investigation focuses on implementing passive cooling thermal management technique using heat sinks filled with paraffin wax as phase change material (PCM). Al2O3 nanoparticles are dispersed as thermal conductivity enhancer (TCE) in different weight fractions (φ) for improved performance in the PCM. Unfinned and two finned heat sinks are used in this investigation. Experimental analysis is performed on different configurations of heat sinks and nano-enhanced phase change materials (NePCMs) consisting various weight fraction of Al2O3 nanoparticles (φ = 0%, 0.5%, 4%, and 6%) for a constant heat flux of 2.0 kW/m2. Results show that latent heat and specific heat capacity decreases with increase in the Al2O3 nanoparticle loading. Addition of Al2O3 nanoparticles in the PCM results in the reduced melting time of PCM. While, pure PCM based heat sinks keeps heat sink base temperature lower for longer time duration.


2017 ◽  
Vol 13 (3) ◽  
pp. 83-90 ◽  
Author(s):  
Miqdam T. Chaichan ◽  
Rasha Mohammed Hussein ◽  
Aida Mohammed Jawad

Abstract   Paraffin wax is utilized for the heat storage applications taking advantage from the high stored latent heat during the phase change (from solid to fluid) period. What isn't right with this procedure is that the wax has a little heat transfer rate because of its low thermal conductivity. The thermal conductivity improvement of the paraffin wax has been examined utilizing nano-material with high thermal conductivity. In the recent study, (Al2O3) nanoparticles with weights of 1, 2, and 3% of the paraffin wax were added to the paraffin wax. The Iraqi paraffin wax accessible at the local markets was utilized as a phase change material (PCM). Many properties of the wax were changed due to the addition of nanofillers. The wax color was changed from light brown to white. The thermal conductivity of the paraffin wax was expanded by increasing the additional nanoparticles extent with 37.1, 42.3 and 60.32% for 1, 2 and 3% added nano-Al2O3 compared to pure wax conditions. The subsequent change in the thermal conductivity of the paraffin wax makes it reasonable for the use in thermal storage applications.   Keywords: Latent heat, Nano-alumina, Paraffin wax, Thermal storage,


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1785 ◽  
Author(s):  
Huizhen Ke ◽  
Yonggui Li

In this paper, innovative capric–palmitic–stearic acid ternary eutectic/polyacrylonitrile/aluminum oxide (CA–PA–SA/PAN/Al2O3) form-stable phase change composite fibrous membranes (PCCFMs) with different mass ratios of Al2O3 nanoparticles were prepared for thermal energy storage. The influences of Al2O3 nanoparticles on morphology and thermal performances of the form-stable PCCFMs were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and measurement of melting and freezing times, respectively. The results showed that there was no apparent leakage trace from the SEM observation. The DSC analysis indicated that the addition of Al2O3 nanoparticles had no significant effect on phase transition temperatures and enthalpies of the CA–PA–SA/PAN/Al2O3 form-stable PCCFMs. The melting peak temperatures and melting enthalpies of form-stable PCCFMs were about 25 °C and 131–139 kJ/kg, respectively. The melting and freezing times of the CA–PA–SA/PAN/Al2O310 form-stable PCCFMs were shortened by approximately 21% and 23%, respectively, compared with those of the CA–PA–SA/PAN form-stable PCCFMs due to the addition of Al2O3 nanoparticles acting as heat transfer fillers.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Laura Colla ◽  
Davide Ercole ◽  
Laura Fedele ◽  
Simone Mancin ◽  
Oronzio Manca ◽  
...  

The present work aims at investigating a new challenging use of aluminum oxide (Al2O3) nanoparticles to enhance the thermal properties (thermal conductivity, specific heat, and latent heat) of pure paraffin waxes to obtain a new class of phase change materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding 0.5 and 1.0 wt  % of Al2O3 nanoparticles in two paraffin waxes having melting temperatures of 45 and 55 °C, respectively. The thermophysical properties such as specific heat, latent heat, and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCMs. Furthermore, a numerical comparison between the use of the pure paraffin waxes and the nano-PCMs obtained in a typical electronics passive cooling device was developed and implemented. A numerical model is accomplished to simulate the heat transfer inside the cavity either with PCM or nano-PCM. Numerical simulations were carried out using the ansys-fluent 15.0 code. Results in terms of solid and liquid phase fractions and temperatures and melting time were reported and discussed. They showed that the nano-PCMs determine a delay in the melting process with respect to the pure PCMs.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Kamal A. R. Ismail ◽  
Antonio B. V. Leitão ◽  
Fatima A. M. Lino ◽  
Jorge R. Henriquez

Abstract A conduction model is developed to describe the phase change between the plates of a thermal storage system. The diffusion equation and the associated boundary, initial, and interface conditions are approximated numerically by finite differences and implicit approach with variable time-step. The developed computational code is validated against data and good agreement was found. It is found that the reduction of the surface temperature of the cold plate increases the interface advance rate and reduces the full solidification time. Opposite effects are found due to the increase of the spacing between plates. Further, fractions of Al2O3 nanoparticles are mixed with the phase change material (PCM) to enhance the thermal conductivity of the PCM. For 7% volumetric fraction of Al2O3, the full solidification time and latent heat values decreased by 25.5% and 4.5%, respectively.


Sign in / Sign up

Export Citation Format

Share Document