scholarly journals Advanced treatment of low C/N ratio wastewater treatment plant effluent using a denitrification biological filter: Insight into the effect of medium particle size and hydraulic retention time

Author(s):  
Hao Song ◽  
Jingwei Feng ◽  
Liu Zhang ◽  
Hao Yin ◽  
Lijun Pan ◽  
...  
Author(s):  
Maria Clara V. M. Starling ◽  
Elizângela P. Costa ◽  
Felipe A. Souza ◽  
Elayne C. Machado ◽  
Juliana Calábria de Araujo ◽  
...  

AbstractThis work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82−) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82− at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82− was performed in a solar simulator (30 W m−2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82− and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82− showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L−1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L−1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82− (0.6 € m−3) compared to H2O2 (1.2 € m−3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.


Author(s):  
José Roberto Guimarães ◽  
Regiane Aparecida Guadagnini ◽  
Regina Maura Bueno Franco ◽  
Luciana Urbano dos Santos

AbstractThis study evaluated the effectiveness of H


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Benxin Yu ◽  
Dongping Liu ◽  
Jian Wang ◽  
Yingxue Sun

Abstract Background Most particulate organic matter (POM) cannot be directly degraded in the conventional wastewater treatment, which should be transformed into dissolved organic matter (DOM) through a hydrolysis process. However, non-hydrolyzed POM in the biological treatment can limit treated efficiencies for the wastewater treatment plants (WWTPs) facilities. Hence an operational tool is indispensable for insight into removals of DOM and POM factions in the WWTP. In this study, excitation-emission matrix fluorescence spectroscopy (EEM) combined parallel factor analysis (PARAFAC), two-dimensional correlation (2D-COS) and structural equation modeling (SEM) was employed to evaluate removals of DOM and POM in a wastewater treatment plant. Results Four fluorescence components were identified in DOM and POM substances from the WWTP by EEM combined with PARAFAC, i.e., tyrosine-like (TYLF), tryptophan-like (TRLF), microbial byproduct-like (MBLF), and fulvic acid-like (FALF). In A2/O process, the TYLF and TRLF of DOM were removed to a larger extent than those of MBLF and FALF in anaerobic tank, while TYLF and MBLF of POM were removed to a great extent than those of TRLF and FALF in primary sedimentation and aerobic tanks. By the 2D-COS, a decreasing variation order of DOM fractions in the wastewater treatment process was UV-FALF → MBLF2 → Vis-FALF → TRLF → TYLF, while the decreasing order of POM fractions was Vis-FALF → UV-FALF → MBLF2 → TYLF → MBLF1 → TRLF. SEM revealed that TRLF and TYLF of DOM were degraded by anaerobic microorganism, and TRLF could be transformed partially into FALF. However, TRFL and TYLF of POM were discomposed by aerobic microorganism. Conclusions The 2D-COS and SEM can be practicable tools as EEM-PARAFAC for monitoring DOM and POM in the WWTP. The study could present a theoretical support to improving the retrofit of WWTP and formulating emission standards for organic pollutants.


Sign in / Sign up

Export Citation Format

Share Document