P.0516 Genotype rs25531 polymorphisms and quality in peer relationships adjust the neural response of the anterior prefrontal cortex to cry

2021 ◽  
Vol 53 ◽  
pp. S380-S381
Author(s):  
A. Bonassi ◽  
I. Cataldo ◽  
M. Tandiono ◽  
J.N. Foo ◽  
B. Lepri ◽  
...  
2015 ◽  
Vol 21 (4) ◽  
pp. 271-284 ◽  
Author(s):  
Hsiang-Yuan Lin ◽  
Wen-Yih Isaac Tseng ◽  
Meng-Chuan Lai ◽  
Kayako Matsuo ◽  
Susan Shur-Fen Gau

AbstractThe frontoparietal control network, anatomically and functionally interposed between the dorsal attention network and default mode network, underpins executive control functions. Individuals with attention-deficit/hyperactivity disorder (ADHD) commonly exhibit deficits in executive functions, which are mainly mediated by the frontoparietal control network. Involvement of the frontoparietal control network based on the anterior prefrontal cortex in neurobiological mechanisms of ADHD has yet to be tested. We used resting-state functional MRI and seed-based correlation analyses to investigate functional connectivity of the frontoparietal control network in a sample of 25 children with ADHD (7–14 years; mean 9.94±1.77 years; 20 males), and 25 age-, sex-, and performance IQ-matched typically developing (TD) children. All participants had limited in-scanner head motion. Spearman’s rank correlations were used to test the associations between altered patterns of functional connectivity with clinical symptoms and executive functions, measured by the Conners’ Continuous Performance Test and Spatial Span in the Cambridge Neuropsychological Test Automated Battery. Compared with TD children, children with ADHD demonstrated weaker connectivity between the right anterior prefrontal cortex (PFC) and the right ventrolateral PFC, and between the left anterior PFC and the right inferior parietal lobule. Furthermore, this aberrant connectivity of the frontoparietal control network in ADHD was associated with symptoms of impulsivity and opposition-defiance, as well as impaired response inhibition and attentional control. The findings support potential integration of the disconnection model and the executive dysfunction model for ADHD. Atypical frontoparietal control network may play a pivotal role in the pathophysiology of ADHD. (JINS, 2015, 21, 271–284)


Nature ◽  
10.1038/20178 ◽  
1999 ◽  
Vol 399 (6732) ◽  
pp. 148-151 ◽  
Author(s):  
Etienne Koechlin ◽  
Gianpaolo Basso ◽  
Pietro Pietrini ◽  
Seth Panzer ◽  
Jordan Grafman

Author(s):  
Paola Pinti ◽  
Andrea Devoto ◽  
Isobel Greenhalgh ◽  
Ilias Tachtsidis ◽  
Paul W Burgess ◽  
...  

Abstract Anterior prefrontal cortex (PFC, Brodmann area 10) activations are often, but not always, found in neuroimaging studies investigating deception, and the precise role of this area remains unclear. To explore the role of the PFC in face-to-face deception, we invited pairs of participants to play a card game involving lying and lie detection while we used functional near infrared spectroscopy (fNIRS) to record brain activity in the PFC. Participants could win points for successfully lying about the value of their cards or for detecting lies. We contrasted patterns of brain activation when the participants either told the truth or lied, when they were either forced into this or did so voluntarily and when they either succeeded or failed to detect a lie. Activation in the anterior PFC was found in both lie production and detection, unrelated to reward. Analysis of cross-brain activation patterns between participants identified areas of the PFC where the lead player’s brain activity synchronized their partner’s later brain activity. These results suggest that during situations that involve close interpersonal interaction, the anterior PFC supports processing widely involved in deception, possibly relating to the demands of monitoring one’s own and other people’s behaviour.


2018 ◽  
Author(s):  
Michael Pereira ◽  
Nathan Faivre ◽  
Iñaki Iturrate ◽  
Marco Wirthlin ◽  
Luana Serafini ◽  
...  

AbstractThe human capacity to compute the likelihood that a decision is correct - known as metacognition - has proven difficult to study in isolation as it usually co-occurs with decision-making. Here, we isolated post-decisional from decisional contributions to metacognition by combining a novel paradigm with multimodal imaging. Healthy volunteers reported their confidence in the accuracy of decisions they made or decisions they observed. We found better metacognitive performance for committed vs. observed decisions, indicating that committing to a decision informs confidence. Relying on concurrent electroencephalography and hemodynamic recordings, we found a common correlate of confidence following committed and observed decisions in the inferior frontal gyrus, and a dissociation in the anterior prefrontal cortex and anterior insula. We discuss these results in light of decisional and post-decisional accounts of confidence, and propose a generative model of confidence in which metacognitive performance naturally improves when evidence accumulation is constrained upon committing a decision.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Joshua Henk Balsters ◽  
Valerio Zerbi ◽  
Jerome Sallet ◽  
Nicole Wenderoth ◽  
Rogier B Mars

With the increasing necessity of animal models in biomedical research, there is a vital need to harmonise findings across species by establishing similarities and differences in rodent and primate neuroanatomy. Using connectivity fingerprint matching, we compared cortico-striatal circuits across humans, non-human primates, and mice using resting-state fMRI data in all species. Our results suggest that the connectivity patterns for the nucleus accumbens and cortico-striatal motor circuits (posterior/lateral putamen) were conserved across species, making them reliable targets for cross-species comparisons. However, a large number of human and macaque striatal voxels were not matched to any mouse cortico-striatal circuit (mouse->human: 85% unassigned; mouse->macaque 69% unassigned; macaque->human; 31% unassigned). These unassigned voxels were localised to the caudate nucleus and anterior putamen, overlapping with executive function and social/language regions of the striatum and connected to prefrontal-projecting cerebellar lobules and anterior prefrontal cortex, forming circuits that seem to be unique for non-human primates and humans.


2011 ◽  
Vol 26 ◽  
pp. e52
Author(s):  
Annalaura Lagioia ◽  
Martin Debbane ◽  
Maude Schneider ◽  
Stephan Eliez

Sign in / Sign up

Export Citation Format

Share Document