Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanical properties via metal-ligand bond interactions

2018 ◽  
Vol 100 ◽  
pp. 219-227 ◽  
Author(s):  
Imtiaz Hussain ◽  
Sayed Mir Sayed ◽  
Shunli Liu ◽  
Fang Yao ◽  
Olayinka Oderinde ◽  
...  
2013 ◽  
Vol 46 (14) ◽  
pp. 5416-5422 ◽  
Author(s):  
Aaron C. Jackson ◽  
Frederick L. Beyer ◽  
Samuel C. Price ◽  
B. Christopher Rinderspacher ◽  
Robert H. Lambeth

2020 ◽  
Vol 11 (41) ◽  
pp. 6549-6558
Author(s):  
Yohei Miwa ◽  
Mayu Yamada ◽  
Yu Shinke ◽  
Shoichi Kutsumizu

We designed a novel polyisoprene elastomer with high mechanical properties and autonomous self-healing capability at room temperature facilitated by the coexistence of dynamic ionic crosslinks and crystalline components that slowly reassembled.


2021 ◽  
Author(s):  
Zhanyu Jia ◽  
Guangyao Li ◽  
Juan Wang ◽  
shouhua Su ◽  
Jie Wen ◽  
...  

Conductivity, self-healing and moderate mechanical properties are necessary for multifunctional hydrogels which have great potential in health-monitor sensor application. However, the combination of electrical conductivity, self-healing and good mechanical properties...


Author(s):  
Xiaobin Lin ◽  
Qingyi Xie ◽  
Chunfeng Ma ◽  
Guangzhao Zhang

Silicone elastomer coatings have attracted increasing attention owing to its eco-friendly nature, excellent fouling release ability and drag-reducing property. However, the poor mechanical properties and lack of fouling resistance limits...


2021 ◽  
Vol 329 ◽  
pp. 115581
Author(s):  
Chaoxian Chen ◽  
Zhongcun Li ◽  
Siwen Chen ◽  
Lingzhi Kong ◽  
Zhihao Guo ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 700
Author(s):  
Irene A. Kanellopoulou ◽  
Ioannis A. Kartsonakis ◽  
Costas A. Charitidis

Cementitious structures have prevailed worldwide and are expected to exhibit further growth in the future. Nevertheless, cement cracking is an issue that needs to be addressed in order to enhance structure durability and sustainability especially when exposed to aggressive environments. The purpose of this work was to examine the impact of the Superabsorbent Polymers (SAPs) incorporation into cementitious composite materials (mortars) with respect to their structure (hybrid structure consisting of organic core—inorganic shell) and evaluate the microstructure and self-healing properties of the obtained mortars. The applied SAPs were tailored to maintain their functionality in the cementitious environment. Control and mortar/SAPs specimens with two different SAPs concentrations (1 and 2% bwoc) were molded and their mechanical properties were determined according to EN 196-1, while their microstructure and self-healing behavior were evaluated via microCT. Compressive strength, a key property for mortars, which often degrades with SAPs incorporation, in this work, practically remained intact for all specimens. This is coherent with the porosity reduction and the narrower range of pore size distribution for the mortar/SAPs specimens as determined via microCT. Moreover, the self-healing behavior of mortar-SAPs specimens was enhanced up to 60% compared to control specimens. Conclusively, the overall SAPs functionality in cementitious-based materials was optimized.


Sign in / Sign up

Export Citation Format

Share Document