Cross-linked PMS/PLA nanofibers with tunable mechanical properties and degradation rate for biomedical applications

2020 ◽  
Vol 130 ◽  
pp. 109633
Author(s):  
Mahya Rahmani ◽  
Reza Faridi-Majidi ◽  
Mohammad-Mehdi Khani ◽  
Alireza Mashaghi ◽  
Farsad Noorizadeh ◽  
...  
MRS Advances ◽  
2019 ◽  
Vol 4 (46-47) ◽  
pp. 2453-2459
Author(s):  
Esra Güben ◽  
Duygu Ege

Abstract:Nanocomposites comprising of biopolymers and calcium phosphate cements (CaP) are promising due to their biocompatibility, non-toxicity, biodegradability and suitable mechanical properties for biomedical applications. In here, a new composite material was synthesized with carboxymethylcellulose (CMC) and gelatin (GEL) as the liquid phase and CaP based powder as the solid phase. In this study, the effect of addition of different wt% of GEL including 0, 5, 10, 20 in the liquid phase was investigated on the physical properties of the nanocomposites. Physico-chemical characteristics of materials were determined by using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and mechanical tests. Swelling analysis was performed after 1, 8, 16, 24 and 48 hours and degradation of samples was studied after 7 and 14 days. FTIR results showed that there was physical interaction between CMC and GEL with H bonding which was evident from the peak at 3288cm-1. Disruption in GEL structure was observed from the band at 1600-1400 cm-1 Disruption of GEL structure may increase the interaction between CMC and GEL molecules. After mixing of solid and liquid phases, negative charged COO- groups on CMC and Ca2+ molecules from CaP start to interact with each other. This produces attraction sites for PO43- molecules. This lead to accumulation of hydroxyapatite-like structures. A homogenous and porous microstructure was observed by using SEM in all samples. Mechanical tests showed that GEL improved the strength of the samples up to 20 wt% of GEL. The addition of 20 wt% of GEL decreased the mechanical properties. The compressive strength values were found up to approximately 6 MPa. Swelling results revealed that increasing in GEL concentration cause decrease in swelling until the 16th hour, after that 10wt% GEL samples had the lowest swelling which was approximately 28%. Finally, degradation studies indicated that the highest degradation rate was for 10% GEL incorporated samples. Addition of further GEL also reduced the degradation rate. Overall, the addition of GEL improved physical properties of the samples for potential biomedical applications.


Author(s):  
Sofia Ribeiro ◽  
Ana M. Carvalho ◽  
Emanuel M. Fernandes ◽  
Manuela E. Gomes ◽  
Rui L. Reis ◽  
...  

2015 ◽  
Vol 132 (22) ◽  
pp. n/a-n/a ◽  
Author(s):  
Anahita Khanlari ◽  
Jason E. Schulteis ◽  
Tiffany C. Suekama ◽  
Michael S. Detamore ◽  
Stevin H. Gehrke

2020 ◽  
Vol 8 (14) ◽  
pp. 4026-4038 ◽  
Author(s):  
Xuewei Bi ◽  
Linhao Li ◽  
Zhinan Mao ◽  
Bo Liu ◽  
Lingbing Yang ◽  
...  

The SF layer-by-layer surface functionalized SIS membrane exhibits tunable mechanical properties and degradation rate, satisfactory biocompatibility and good bioactivity.


2020 ◽  
Author(s):  
Sofia Ribeiro ◽  
Emanuel M. Fernandes ◽  
Manuela E. Gomes ◽  
Rui L. Reis ◽  
Yves Bayon ◽  
...  

Author(s):  
Lili Chen ◽  
Yanlin Long ◽  
Xian Cheng ◽  
Qingming Tang

Silk is an ancient material which acts important roles in numerous biomedical applications, such as tissue regeneration, drug delivery, because of its excellent tunable mechanical properties and diverse physical structures....


2021 ◽  
Vol 9 (10) ◽  
pp. 2532-2546 ◽  
Author(s):  
Behzad Shiroud Heidari ◽  
Peilin Chen ◽  
Rui Ruan ◽  
Seyed Mohammad Davachi ◽  
Hani Al-Salami ◽  
...  

Finding the right balance in mechanical properties and degradation rate of biodegradable materials for biomedical applications is challenging, not only at the time of implantation but also during biodegradation.


2020 ◽  
Vol 27 (28) ◽  
pp. 4622-4646 ◽  
Author(s):  
Huayu Liu ◽  
Kun Liu ◽  
Xiao Han ◽  
Hongxiang Xie ◽  
Chuanling Si ◽  
...  

Background: Cellulose Nanofibrils (CNFs) are natural nanomaterials with nanometer dimensions. Compared with ordinary cellulose, CNFs own good mechanical properties, large specific surface areas, high Young's modulus, strong hydrophilicity and other distinguishing characteristics, which make them widely used in many fields. This review aims to introduce the preparation of CNFs-based hydrogels and their recent biomedical application advances. Methods: By searching the recent literatures, we have summarized the preparation methods of CNFs, including mechanical methods and chemical mechanical methods, and also introduced the fabrication methods of CNFs-based hydrogels, including CNFs cross-linked with metal ion and with polymers. In addition, we have summarized the biomedical applications of CNFs-based hydrogels, including scaffold materials and wound dressings. Results: CNFs-based hydrogels are new types of materials that are non-toxic and display a certain mechanical strength. In the tissue scaffold application, they can provide a micro-environment for the damaged tissue to repair and regenerate it. In wound dressing applications, it can fit the wound surface and protect the wound from the external environment, thereby effectively promoting the healing of skin tissue. Conclusion: By summarizing the preparation and application of CNFs-based hydrogels, we have analyzed and forecasted their development trends. At present, the research of CNFs-based hydrogels is still in the laboratory stage. It needs further exploration to be applied in practice. The development of medical hydrogels with high mechanical properties and biocompatibility still poses significant challenges.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


Sign in / Sign up

Export Citation Format

Share Document