Do UCP2 and mild uncoupling improve longevity?

2010 ◽  
Vol 45 (7-8) ◽  
pp. 586-595 ◽  
Author(s):  
Daniel Dikov ◽  
Angelique Aulbach ◽  
Britta Muster ◽  
Stefan Dröse ◽  
Marina Jendrach ◽  
...  
Keyword(s):  
2011 ◽  
Vol 39 (5) ◽  
pp. 1305-1309 ◽  
Author(s):  
Irina G. Shabalina ◽  
Jan Nedergaard

During the last decade, the possibility that ‘mild’ uncoupling could be protective against oxidative damage by diminishing ROS (reactive oxygen species) production has attracted much interest. In the present paper, we briefly examine the evidence for this possibility. It is only ROS production from succinate under reverse electron-flow conditions that is sensitive to membrane potential fluctuations, and so only this type of ROS production could be affected; however, the conditions under which succinate-supported ROS production is observed include succinate concentrations that are supraphysiological. Any decrease in membrane potential, even ‘mild uncoupling’, must necessarily lead to large increases in respiration, i.e. it must be markedly thermogenic. Mitochondria within cells are normally ATP-producing and thus already have a diminished membrane potential, and treatment of cells, organs or animals with small amounts of artificial uncoupler does not seem to have beneficial effects that are explainable via reduced ROS production. Although it has been suggested that members of the uncoupling protein family (UCP1, UCP2 and UCP3) may mediate a mild uncoupling, present evidence does not unequivocally support such an effect, e.g. the absence of the truly uncoupling protein UCP1 is not associated with increased oxidative damage. Thus present evidence does not support mild uncoupling as a physiologically relevant alleviator of oxidative damage.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
V. A. Chistyakov ◽  
Yu. O. Smirnova ◽  
E. V. Prazdnova ◽  
A. V. Soldatov

Novel mechanism of antioxidant activity of buckminsterfullerene C60based on protons absorbing and mild uncoupling of mitochondrial respiration and phosphorylation was postulated. In the present study we confirm this hypothesis using computer modeling based on Density Functional Theory. Fullerene's geroprotective activity is sufficiently higher than those of the most powerful reactive oxygen species scavengers. We propose here that C60has an ability to acquire positive charge by absorbing inside several protons and this complex could penetrate into mitochondria. Such a process allows for mild uncoupling of respiration and phosphorylation. This, in turn, leads to the decrease in ROS production.


2005 ◽  
Vol 392 (2) ◽  
pp. 353-362 ◽  
Author(s):  
Martin D. Brand ◽  
Julian L. Pakay ◽  
Augustine Ocloo ◽  
Jason Kokoszka ◽  
Douglas C. Wallace ◽  
...  

The basal proton conductance of mitochondria causes mild uncoupling and may be an important contributor to metabolic rate. The molecular nature of the proton-conductance pathway is unknown. We show that the proton conductance of muscle mitochondria from mice in which isoform 1 of the adenine nucleotide translocase has been ablated is half that of wild-type controls. Overexpression of the adenine nucleotide translocase encoded by the stress-sensitive B gene in Drosophila mitochondria increases proton conductance, and underexpression decreases it, even when the carrier is fully inhibited using carboxyatractylate. We conclude that half to two-thirds of the basal proton conductance of mitochondria is catalysed by the adenine nucleotide carrier, independently of its ATP/ADP exchange or fatty-acid-dependent proton-leak functions.


2021 ◽  
Vol 11 (8) ◽  
pp. 1050
Author(s):  
Dmitry B. Zorov ◽  
Nadezda V. Andrianova ◽  
Valentina A. Babenko ◽  
Irina B. Pevzner ◽  
Vasily A. Popkov ◽  
...  

There has been an explosion of interest in the use of uncouplers of oxidative phosphorylation in mitochondria in the treatment of several pathologies, including neurological ones. In this review, we analyzed all the mechanisms associated with mitochondrial uncoupling and the metabolic and signaling cascades triggered by uncouplers. We provide a full set of positive and negative effects that should be taken into account when using uncouplers in experiments and clinical practice.


FEBS Letters ◽  
2000 ◽  
Vol 474 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Valentino Casolo ◽  
Enrico Braidot ◽  
Elisa Chiandussi ◽  
Francesco Macrì ◽  
Angelo Vianello

2008 ◽  
Vol 1777 ◽  
pp. S58
Author(s):  
Alexander M. Wolf ◽  
Sadamitsu Asoh ◽  
Ikuroh Ohsawa ◽  
Shigeo Ohta

2004 ◽  
Vol 71 ◽  
pp. 203-213 ◽  
Author(s):  
Martin D. Brand ◽  
Julie A. Buckingham ◽  
Telma C. Esteves ◽  
Katherine Green ◽  
Adrian J. Lambert ◽  
...  

Mitochondria are a major source of superoxide, formed by the one-electron reduction of oxygen during electron transport. Superoxide initiates oxidative damage to phospholipids, proteins and nucleic acids. This damage may be a major cause of degenerative disease and aging. In isolated mitochondria, superoxide production on the matrix side of the membrane is particularly high during reversed electron transport to complex I driven by oxidation of succinate or glycerol 3-phosphate. Reversed electron transport and superoxide production from complex I are very sensitive to proton motive force, and can be strongly decreased by mild uncoupling of oxidative phosphorylation. Both matrix superoxide and the lipid peroxidation product 4-hydroxy-trans-2-nonenal can activate uncoupling through endogenous UCPs (uncoupling proteins). We suggest that superoxide releases iron from aconitase, leading to a cascade of lipid peroxidation and the release of molecules such as hydroxy-nonenal that covalently modify and activate the proton conductance of UCPs and other proteins. A function of the UCPs may be to cause mild uncoupling in response to matrix superoxide and other oxidants, leading to lowered proton motive force and decreased superoxide production. This simple feedback loop would constitute a self-limiting cycle to protect against excessive superoxide production, leading to protection against aging, but at the cost of a small elevation of respiration and basal metabolic rate.


Sign in / Sign up

Export Citation Format

Share Document