Effect of non-steroidal anti-inflammatory drugs on biological properties of Acanthamoeba castellanii belonging to the T4 genotype

2016 ◽  
Vol 168 ◽  
pp. 45-50 ◽  
Author(s):  
Ruqaiyyah Siddiqui ◽  
Sahreena Lakhundi ◽  
Junaid Iqbal ◽  
Naveed Ahmed Khan
Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1677 ◽  
Author(s):  
Shin ◽  
Eskandari ◽  
Suntharalingam

Copper(II) complexes bearing nonsteroidal anti-inflammatory drugs (NSAIDs) are known to potently kill cancer stem cells (CSCs), a subpopulation of tumour cells with high metastatic and relapse fidelity. One of the major disadvantages associated to these copper(II) complexes is their instability in the presence of strong cellular reductants (such as ascorbic acid). Here we present a biologically stable copper(II)-NSAID complex containing a bathocuproinedisulfonic acid disodium ligand and two indomethacin moieties, Cu(bathocuproinedisulfonic acid disodium)(indomethacin)2, 2. The copper(II) complex, 2 kills bulk breast cancer cells and breast CSC equally (in the sub-micromolar range) and displays very low toxicity against non-tumorigenic breast and kidney cells (IC50 value > 100 µM). Three-dimensional cell culture studies show that 2 can significantly reduce the number and size of breast CSC mammospheres formed (from single suspensions) to a similar level as salinomycin (an established anti-breast CSC agent). The copper(II) complex, 2 is taken up reasonably by breast CSCs and localises largely in the cytoplasm (>90%). Cytotoxicity studies in the presence of specific inhibitors suggest that 2 induces CSC death via a reactive oxygen species (ROS) and cyclooxygenase isoenzyme-2 (COX-2) dependent apoptosis pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
María Luisa Del Prado-Audelo ◽  
Hernán Cortés ◽  
Isaac H. Caballero-Florán ◽  
Maykel González-Torres ◽  
Lidia Escutia-Guadarrama ◽  
...  

In the last decades, the search for natural products with biological applications as alternative treatments for several inflammatory diseases has increased. In this respect, terpenes are a family of organic compounds obtained mainly from plants and trees, such as tea, cannabis, thyme, and citrus fruits like lemon or mandarin. These molecules present attractive biological properties such as analgesic and anticonvulsant activities. Furthermore, several studies have demonstrated that certain terpenes could reduce inflammation symptoms by decreasing the release of pro-inflammatory cytokines for example, the nuclear transcription factor-kappa B, interleukin 1, and the tumor necrosis factor-alpha. Thus, due to various anti-inflammatory drugs provoking side effects, the search and analysis of novel therapeutics treatments are attractive. In this review, the analysis of terpenes’ chemical structure and their mechanisms in anti-inflammatory functions are addressed. Additionally, we present a general analysis of recent investigations about their applications as an alternative treatment for inflammatory diseases. Furthermore, we focus on terpenes-based nanoformulations and employed dosages to offer a global perspective of the state-of-the-art.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
V Francisco ◽  
A Figueirinha ◽  
B Neves ◽  
C Garcia-Rodriguez ◽  
M Lopes ◽  
...  

1996 ◽  
Vol 16 (01) ◽  
pp. 56-59
Author(s):  
D. J. Tyrrell ◽  
C. P. Page

SummaryEvidence continues to accumulate that the pleiotropic nature of heparin (beyond its anticoagulant potency) includes anti-inflammatory activities at a number of levels. It is clear that drugs exploiting these anti-inflammatory activities of heparin may offer exciting new therapeutic applications to the treatment of a wide range of inflammatory diseases.


This review paper covers the major synthetic approaches attempted towards the synthesis of some Non-Steroidal Anti-Inflammatory Drugs (Naproxen, Ibuprofen and Nabumetone)


Sign in / Sign up

Export Citation Format

Share Document