The role of homeodomain transcription factors in fungal development

2018 ◽  
Vol 32 (4) ◽  
pp. 219-230 ◽  
Author(s):  
Peter Jan Vonk ◽  
Robin A. Ohm
2021 ◽  
Vol 9 (1) ◽  
pp. 144
Author(s):  
Sung-Hun Son ◽  
Mi-Kyung Lee ◽  
Ye-Eun Son ◽  
Hee-Soo Park

Homeobox transcription factors are conserved in eukaryotes and act as multi-functional transcription factors in filamentous fungi. Previously, it was demonstrated that HbxB governs fungal development and spore viability in Aspergillus nidulans. Here, the role of HbxB in A. nidulans was further characterized. RNA-sequencing revealed that HbxB affects the transcriptomic levels of genes associated with trehalose biosynthesis and response to thermal, oxidative, and radiation stresses in asexual spores called conidia. A phenotypic analysis found that hbxB deletion mutant conidia were more sensitive to ultraviolet stress. The loss of hbxB increased the mRNA expression of genes associated with β-glucan degradation and decreased the amount of β-glucan in conidia. In addition, hbxB deletion affected the expression of the sterigmatocystin gene cluster and the amount of sterigmatocystin. Overall, these results indicated that HbxB is a key transcription factor regulating trehalose biosynthesis, stress tolerance, β-glucan degradation, and sterigmatocystin production in A.nidulans conidia.


2011 ◽  
Vol 7 (12) ◽  
pp. 727-737 ◽  
Author(s):  
Kelly L. Prince ◽  
Emily C. Walvoord ◽  
Simon J. Rhodes

2010 ◽  
Vol 9 (4) ◽  
pp. 480-485 ◽  
Author(s):  
Joanne Wong Sak Hoi ◽  
Bernard Dumas

ABSTRACT Ste12 and Ste12-like proteins are transcription factors found exclusively in the fungal kingdom. In the yeast model Saccharomyces cerevisiae, where the first member was identified, Ste12p was shown to regulate mating and invasive/pseudohyphal growth. In recent literature, there have been several reports of Ste12-like factors in multiple fungal systems, yeasts or filamentous fungi, with saprophytic or parasitic life-styles. In all these models, Ste12 and Ste12-like factors are involved in the regulation of fungal development and pathogenicity. In this review, we discuss the features, the regulation, and the role of Ste12 and Ste12-like factors by highlighting the similarities and dissimilarities that occur within this group.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lei Zhang ◽  
Yin Wang ◽  
Fei Yu ◽  
Xin Li ◽  
Huijuan Gao ◽  
...  

Circular RNAs (circRNAs) are covalently closed RNAs that function in various physiological and pathological processes. CircRNAs are widely involved in the development of cardiovascular disease (CVD), one of the leading causes of morbidity and mortality worldwide. CircHIPK3 is generated from the second exon of the HIPK3 gene, a corepressor of homeodomain transcription factors. As an exonic circRNA (ecRNA), circHIPK3 is produced through intron-pairing driven circularization facilitated by Alu elements. In the past 5 years, a growing number of studies have revealed the multifunctional roles of circHIPK3 in different diseases, such as cancer and CVD. CircHIPK3 mainly participates in CVD pathogenesis through interacting with miRNAs. This paper summarizes the current literature on the biogenesis and functions of circHIPK3, elucidates the role of circHIPK3 in different CVD patterns, and explores future perspectives.


Pneumologie ◽  
2012 ◽  
Vol 66 (06) ◽  
Author(s):  
HM Al-Tamari ◽  
M Eschenhagen ◽  
A Schmall ◽  
R Savai ◽  
HA Ghofrani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document