pseudohyphal growth
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 11)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 9 (12) ◽  
pp. 2577
Author(s):  
Samuele Sabbatini ◽  
Sofia Visconti ◽  
Marco Gentili ◽  
Eleonora Lusenti ◽  
Emilia Nunzi ◽  
...  

Candida albicans is a commensal fungus of the vaginal mucosa and the principal etiological agent of vaginal candidiasis. Vaginal dysbiosis has been reported during vulvovaginal candidiasis (VVC), with a progressive decrease in Lactobacillus crispatus population and an increase in L. iners population. To date, the role of L. iners in VVC pathogenesis remains scarcely explored. Herein we investigated the in vitro effect of L. iners cell-free supernatant (CFS) on the ability of C. albicans to form biofilms. Biomass and metabolic activity were measured by crystal violet and XTT assays. Further, light microscopy was performed to determine the effect of L. iners CFS on biofilm cellular morphology. We found that L. iners CFS induced a significant increase in biofilm formation by C. albicans clinical isolates which were categorized as moderate or weak biofilm producers. This effect was associated with an enhancement of hyphal/pseudohyphal growth, and the expression levels of HWP1 and ECE1, which are typical hyphae-associated genes, were upregulated. Overall, these results suggest that L. iners contributes to the pathogenesis of VVC and highlight the complexity of the interaction between C. albicans and vaginal lactobacilli. Understanding these interactions could prove essential for the development of new strategies for treating VVC.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Anuj Kumar

Eukaryotic cells are exquisitely responsive to external and internal cues, achieving precise control of seemingly diverse growth processes through a complex interplay of regulatory mechanisms. The budding yeast Saccharomyces cerevisiae provides a fascinating model of cell growth in its stress-responsive transition from planktonic single cells to a filamentous pseudohyphal growth form. During pseudohyphal growth, yeast cells undergo changes in morphology, polarity, and adhesion to form extended and invasive multicellular filaments. This pseudohyphal transition has been studied extensively as a model of conserved signaling pathways regulating cell growth and for its relevance in understanding the pathogenicity of the related opportunistic fungus Candida albicans, wherein filamentous growth is required for virulence. This review highlights the broad gene set enabling yeast pseudohyphal growth, signaling pathways that regulate this process, the role and regulation of proteins conferring cell adhesion, and interesting regulatory mechanisms enabling the pseudohyphal transition. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Naia Risager Wright ◽  
Tune Wulff ◽  
Christopher T. Workman ◽  
Nanna Petersen Rønnest ◽  
Nikolaus Sonnenschein

AbstractCells cultured in a nutrient-limited environment can undergo adaptation, which confers improved fitness under long-term energy limitation. We have previously shown how a recombinant S. cerevisiae strain, producing a heterologous insulin product, under glucose-limited conditions adapts over time at the average population level.In this paper, we investigated this adaptation at the single-cell level by application of FACS and showed that three apparent phenotypes underlie the adaptive response observed at the bulk level: (1) cells that drastically reduced insulin production (23 %), (2) cells with reduced enzymatic capacity in central carbon metabolism (46 %), (3) cells that exhibited pseudohyphal growth (31 %). We speculate that the phenotypic heterogeneity is a result of different mechanisms to increase fitness. Cells with reduced insulin productivity have increased fitness by reducing the burden of the heterologous insulin production and the populations with reduced enzymatic capacity of the central carbon metabolism and pseudohyphal growth have increased fitness towards the glucose-limited conditions.The results highlight the importance of considering population heterogeneity when studying adaptation and evolution.


2020 ◽  
Vol 19 (10) ◽  
pp. 1143-1149
Author(s):  
B. Neuhäuser

Abstract It is crucial for the growth and development of an organism whether ammonium is transported across its membranes in a form of NH4+ or NH3. The transport of both molecules follows different pH-dependent gradients across membranes and transport of both substrates differentially affects the internal and external pH. As a consequence, they directly influence the physiology and organism development. CaMep2 from Candida albicans shows a dual transceptor function in ammonium transport and sensing. CaMep2 senses low ammonium availability and induces filamentous growth. CaMep1, by contrast, is only active in transport, but not involved in ammonium signaling. Here, both proteins were heterologously expressed in Xenopus laevis oocytes. This study identified electrogenic NH4+ transport by CaMep1 and electroneutral NH3 transport by CaMep2, which might be a prerequisite for the induction of pseudohyphal growth.


2020 ◽  
Vol 117 (38) ◽  
pp. 23847-23858
Author(s):  
Yanyan Wang ◽  
Xinli Wei ◽  
Zhuyun Bian ◽  
Jiangchun Wei ◽  
Jin-Rong Xu

Umbilicaria muhlenbergiiis the only known dimorphic lichenized fungus that grows in the hyphal form in lichen thalli but as yeast cells in axenic cultures. However, the regulation of yeast-to-hypha transition and its relationship to the establishment of symbiosis are not clear. In this study, we show that nutrient limitation and hyperosmotic stress trigger the dimorphic change inU. muhlenbergii. Contact with algal cells of its photobiontTrebouxia jamesiiinduced pseudohyphal growth. Treatments with the cAMP diphosphoesterase inhibitor IBMX (3-isobutyl-1-methylxanthine) induced pseudohyphal/hyphal growth and resulted in the differentiation of heavily melanized, lichen cortex-like structures in culture, indicating the role of cAMP signaling in regulating dimorphism. To confirm this observation, we identified and characterized two Gα subunitsUmGPA2andUmGPA3. Whereas deletion ofUmGPA2had only a minor effect on pseudohyphal growth, the ΔUmgpa3mutant was defective in yeast-to-pseudohypha transition induced by hyperosmotic stress orT. jamesiicells. IBMX treatment suppressed the defect of ΔUmgpa3in pseudohyphal growth. Transformants expressing theUmGPA3G45VorUmGPA3Q208Ldominant active allele were enhanced in the yeast-to-pseudohypha transition and developed pseudohyphae under conditions noninducible to the wild type. Interestingly,T. jamesiicells in close contact with pseudohyphae ofUmGPA3G45VandUmGPA3Q208Ltransformants often collapsed and died after coincubation for over 72 h, indicating that improperly regulated pseudohyphal growth due to dominant active mutations may disrupt the initial establishment of symbiotic interaction between the photobiont and mycobiont. Taken together, these results show that the cAMP-PKA pathway plays a critical role in regulating dimorphism and symbiosis inU. muhlenbergii.


2020 ◽  
Vol 20 (5) ◽  
Author(s):  
Sonakshi De ◽  
Corinna Rebnegger ◽  
Josef Moser ◽  
Nadine Tatto ◽  
Alexandra B Graf ◽  
...  

ABSTRACT Many yeasts differentiate into multicellular phenotypes in adverse environmental conditions. Here, we investigate pseudohyphal growth in Komagataella phaffii and the involvement of the flocculin (FLO) gene family in its regulation. The K. phaffii FLO family consists of 13 members, and the conditions inducing pseudohyphal growth are different from Saccharomyces cerevisiae. So far, this phenotype was only observed when K. phaffii was cultivated at slow growth rates in glucose-limited chemostats, but not upon nitrogen starvation or the presence of fusel alcohols. Transcriptional analysis identified that FLO11, FLO400 and FLO5-1 are involved in the phenotype, all being controlled by the transcriptional regulator Flo8. The three genes exhibit a complex mechanism of expression and repression during transition from yeast to pseudohyphal form. Unlike in S. cerevisiae, deletion of FLO11 does not completely prevent the phenotype. In contrast, deletion of FLO400 or FLO5-1 prevents pseudohyphae formation, and hampers FLO11 expression. FAIRE-Seq data shows that the expression and repression of FLO400 and FLO5-1 are correlated to open or closed chromatin regions upstream of these genes, respectively. Our findings indicate that K. phaffii Flo400 and/or Flo5-1 act as upstream signals that lead to the induction of FLO11 upon glucose limitation in chemostats at slow growth and chromatin modulation is involved in the regulation of their expression.


2020 ◽  
Vol 133 (15) ◽  
pp. jcs235994 ◽  
Author(s):  
Merethe Mørch Frøsig ◽  
Sara Rute Costa ◽  
Johannes Liesche ◽  
Jeppe Thulin Østerberg ◽  
Susanne Hanisch ◽  
...  

mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Gustavo Bravo Ruiz ◽  
Zoe K. Ross ◽  
Neil A. R. Gow ◽  
Alexander Lorenz

ABSTRACT The morphogenetic switching between yeast cells and filaments (true hyphae and pseudohyphae) is a key cellular feature required for full virulence in many polymorphic fungal pathogens, such as Candida albicans. In the recently emerged yeast pathogen Candida auris, occasional elongation of cells has been reported. However, environmental conditions and genetic triggers for filament formation have remained elusive. Here, we report that induction of DNA damage and perturbation of replication forks by treatment with genotoxins, such as hydroxyurea, methyl methanesulfonate, and the clinically relevant fungistatic 5-fluorocytosine, cause filamentation in C. auris. The filaments formed were characteristic of pseudohyphae and not parallel-sided true hyphae. Pseudohyphal growth is apparently signaled through the S phase checkpoint and, interestingly, is Tup1 independent in C. auris. Intriguingly, the morphogenetic switching capability is strain specific in C. auris, highlighting the heterogenous nature of the species as a whole. IMPORTANCE Candida auris is a newly emerged fungal pathogen of humans. This species was first reported in 2009 when it was identified in an ear infection of a patient in Japan. However, despite intense interest in this organism as an often multidrug-resistant fungus, there is little knowledge about its cellular biology. During infection of human patients, fungi are able to change cell shape from ellipsoidal yeast cells to elongated filaments to adapt to various conditions within the host organism. There are different types of filaments, which are triggered by reactions to different cues. Candida auris fails to form filaments when exposed to triggers that stimulate yeast filament morphogenesis in other fungi. Here, we show that it does form filaments when its DNA is damaged. These conditions might arise when Candida auris cells interact with host immune cells or during growth in certain host tissues (kidney or bladder) or during treatment with antifungal drugs.


2019 ◽  
Author(s):  
Gustavo Bravo Ruiz ◽  
Zoe K. Ross ◽  
Neil A.R. Gow ◽  
Alexander Lorenz

ABSTRACTThe morphogenetic switching between yeast cells and filaments (true hyphae and pseudohyphae) is a key cellular feature required for full virulence in many polymorphic fungal pathogens, such as Candida albicans. In the recently emerged yeast pathogen Candida auris, occasional elongation of cells has been reported. However, environmental conditions and genetic triggers for filament formation have remained elusive. Here, we report that induction of DNA damage and perturbation of replication forks by treatment with genotoxins, such as hydroxyurea, methyl methanesulfonate, and the clinically relevant fungistatic 5-fluorocytosine, causes filamentation in C. auris. The filaments formed were characteristic of pseudohyphae and not parallel-sided true hyphae. Pseudohyphal growth is apparently signalled through the S phase checkpoint and, interestingly, is Tup1-independent in C. auris. Intriguingly, the morphogenetic switching capability is strain-specific in C. auris, highlighting the heterogenous nature of the species as a whole.IMPORTANCECandida auris is a newly emerged fungal pathogen of humans. This species was first reported in 2009, when it was identified in an ear infection of a patient in Japan. However, despite intense interest in this organism as an often multidrug-resistant fungus there is little knowledge about its cellular biology. During infection of human patients, fungi are able to change cell shape from ellipsoidal yeast cells to elongated filaments to adapt to various conditions within the host organism. There are different types of filaments, which are triggered by reactions to different cues. Candida auris fails to form filaments when exposed to triggers that stimulate yeast-filament morphogenesis in other fungi. Here, we show that it does form filaments when its DNA is damaged. These conditions might arise when Candida auris cells interact with host immune cells, or growing in certain host tissues (kidney, bladder), or during treatment with antifungal drugs.


Genetics ◽  
2019 ◽  
Vol 213 (2) ◽  
pp. 705-720 ◽  
Author(s):  
Nebibe Mutlu ◽  
Daniel T. Sheidy ◽  
Angela Hsu ◽  
Han Seol Jeong ◽  
Katherine J. Wozniak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document