Effect of fertilization frequency on cotton yield and biomass accumulation

2012 ◽  
Vol 125 ◽  
pp. 161-166 ◽  
Author(s):  
Guozheng Yang ◽  
Haoyue Tang ◽  
Jun Tong ◽  
Yichun Nie ◽  
Xianlong Zhang
2020 ◽  
Author(s):  
xinghu song ◽  
Ying Huang ◽  
Yuan Yuan ◽  
Shahbaz Atta Tung ◽  
Biangkham Souliyanonh ◽  
...  

Abstract Background: An optimal N rate is one of the basic determinants for high cotton yield. The purpose of this study was to determine the optimal N rate on a new cotton cropping pattern with late-sowing, high density and one-time fertilization at first flower in Yangtze River Valley China. A 2-year experiment was conducted in 2015 and 2016 with a randomized complete blocks design, and cotton growth process, yield and biomass accumulation were examined. Results: The results showed that N rate had no effect on cotton growing progress or periods. Cotton yield was increased with N rate increasing from 120-180 kg·hm-2, while the yield was not increased when N was beyond 180 kg·hm-2, or even decreased (9-29%). Cotton had the highest biomass at N180 due to its highest accumulation speed during the fast accumulation period (FAP). Conclusions: The result suggests that cotton N rate could be reduced further to be 180 kg·hm-2 under the new cropping pattern in Yangtze River Valley China.


2020 ◽  
Author(s):  
xinghu song ◽  
Ying Huang ◽  
Yuan Yuan ◽  
Shahbaz Atta Tung ◽  
Biangkham Souliyanonh ◽  
...  

Abstract Background An optimal N rate is one of the basic determinants for high cotton yield. The purpose of this study was to determine the optimal N rate on a new cotton cropping pattern with late-sowing, high density and one-time fertilization at first flower in Yangtze River Valley China. A 2-year experiment was conducted in 2015 and 2016 with a randomized complete blocks design, and cotton growth process, yield and biomass accumulation were examined. Results The results showed that N rate had no effect on cotton growing progress or periods. Cotton yield was increased with N rate increasing from 120–180 kg ha− 1, while the yield was not increased when N was beyond 180 kg ha− 1, or even decreased (9–29%). Cotton had the highest biomass at N180 due to its highest accumulation speed during the fast accumulation period (FAP). Conclusions The result suggests that cotton N rate could be reduced further to be 180 kg ha− 1 under the new cropping pattern in Yangtze River Valley China.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 153
Author(s):  
Babar Iqbal ◽  
Fanxuan Kong ◽  
Inam Ullah ◽  
Saif Ali ◽  
Huijie Li ◽  
...  

Phosphorus (P) plays a pivotal role in cotton by enhancing the reproductive growth and yield formation. Cotton cultivars vary greatly in response to P availability, especially under P-deficient conditions. So, we hypothesized that the increasing P level promotes the reproductive growth in cotton cultivars varying with P sensitivity. For this, two cotton cultivars, Lu-54 (sensitive to low P) and Yuzaomian-9110 (tolerant to low P), in response to three different P levels (P0: 0 (control), P1: 100, and P2: 200 kg P2O5 ha−1) were studied at 39, 52, 69, 83, and 99 days after transplanting during 2017 and 2018. The results revealed that the seed cotton yield was improved in P1 and P2 treatments by 23.9%–34.5% and 30.8%–52.3% in Lu-54, and 16.6%–25.6% and 20.6%–38.5% in Yuzaomian-9110 during 2017 and 2018, respectively. The accumulation of reproductive organ biomass was 21.0%–52.1% and 28.5%–56.8% higher in Lu-54 and 24.2%–56.8% and 34.8%–69.1% higher in Yuzaomian-9110 in P1 and P2 over the control, respectively. During the fast accumulation period, the average accumulation of N, P, K, and biomass across the years in P2 were recorded as 0.75, 0.6, 0.5, and 120.5 kg ha−1 d−1 in Lu-54, while they were 0.65, 0.5, 0.8, and 98.5 kg ha−1 d−1 in Yuzaomian-9110. Overall, a longer period, in terms of reproductive biomass accumulation, was recorded for Yuzaomian-9110 compared with Lu-54 in 2017 and vice versa across the 2018 growing season. The results suggested that increasing P rate improved yield, reproductive organ biomass, as well as nutrient accumulation in both cotton cultivars. However, low P-sensitive cultivar (Lu-54) was more responsive to P application compared with low P-tolerant cultivar.


2018 ◽  
Vol 215 ◽  
pp. 59-65 ◽  
Author(s):  
Shahbaz Atta Tung ◽  
Ying Huang ◽  
Abdul Hafeez ◽  
Saif Ali ◽  
Aziz Khan ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 14 ◽  
Author(s):  
Nangial Khan ◽  
Yingchun Han ◽  
Fangfang Xing ◽  
Lu Feng ◽  
Zhanbiao Wang ◽  
...  

The number of cotton plants grown per unit of ground area has gained attention due to the high prices of inputs and lower production. Cotton yield per unit of area in Henan province has been stagnant in the last few years. The objectives of this study were to investigate cotton growth, yield, boll spatial distribution and biomass accumulation using different plant densities at cultivation and to find out the optimal plant density. A 2-year field experiment was conducted in a randomized complete block design under six plant densities (D1, 15,000; D2, 33,000; D3, 51,000; D4, 69,000; D5, 87,000 and D6, 105,000 ha−1). Cotton grown at lower plant density produced taller plants and high number of leaves per plant while greater number of branches, fruiting nodes and high number of bolls per unit of ground area were produced under high plant density. Boll retention rate decreased as plant population increased and at nodes 1–8 the rate decreased slowly and then increased dramatically. The highest seed cotton yield (4546 kg ha−1) and lint yield (1682 kg ha−1) was produced by D5. The seed cotton and lint yield produced by D5 were 51–55%, 40–37%, 22–26%, 11–15%, 12–15%, 28–30%, 21–24%, 15–20%, 7–13% and 13–17% higher than D1, D2, D3, D4 and D6 during both years of experimentation, respectively. The increase in seed yield was due to higher biomass accumulation in reproductive organs under D5 plant density. The highest average (110.4 VA kg ha−1 d−1) and maximum (126 VM kg ha−1 d−1) rate of reproductive organs biomass was also accumulated by D5 as compared to other plant densities. The results suggest that D5 is the optimal plant density for high reproductive biomass accumulation and high yield for the area of Henan province.


Author(s):  
A. A. Torop ◽  
V. V. Chaykin ◽  
E. A. Torop ◽  
I. S. Brailova ◽  
S. A. Kuzmenko

We compared peculiarities of the production process of the older and modern(created 80 years after) sorts of winter rye. It is determined that the specific coenotic productivity of a modern sort is 60.6% higher.This increase is due to higher number of productive sprouts per unit area and higher sprout weight. The coenosis of modern sorts is highly resistant to lodging. The modern sort has a 33.5% higher leaf surface index and a 17.7% higher share of the leaves in the upper tier, differing in their erectile orientation in space. As for the content of total chlorophyll in the dry matter of leaves and vagina, the modern sort is inferior to the older by 30.2%during theearing period, and by 17.5%during the milky-wax ripeness period.As for the content of total chlorophyll in the sowing area, the compared sorts were practically the same, but the ratio between chlorophyll a and c was noticeably different. As for the chlorophyll content in stems, in dry matter and in the area of ​​sowing, the modern sort is inferior by1.5 times and more to the older in both observation terms. The sorts differed in the biomass accumulation and its distribution between the parts during the vegetation period. To establish the ear productivity, the older sort used only the current photosynthesis products.In conditions of an unfavorable growth year, the modern sort used previously accumulated by leaves and re-utilized assimilates. The actual and potential productivity of an ear in a modern sort is higher by 77.4 and 68.0%, respectively, but the degree of its vegetative mass supply is lower by 48.6%.Only due to the higher, by 77.4%, utilization of the mass of the sprout, the modern sort binds a greater number of grains in the ear with a higherseparate mass.Since the sharp increase in the ear productivity potential was not accompanied by the same growth of the sprout vegetative mass, the modern sort, in unfavorable conditions for growth, has tensions in the relation system between the sprout vegetative mass and pouring grain. This may be the reason of the unstable achievedyield level.


2011 ◽  
Vol 19 (2) ◽  
pp. 347-352 ◽  
Author(s):  
Dong YANG ◽  
Liu-Sheng DUAN ◽  
Hua-An XIE ◽  
Zhao-Hu LI ◽  
Ting-Xu HUANG

Crop Science ◽  
1995 ◽  
Vol 35 (4) ◽  
pp. 1069-1073 ◽  
Author(s):  
Chang‐chi Chu ◽  
Thomas J. Henneberry ◽  
John W. Radin

2019 ◽  
Vol 35 (6) ◽  
pp. 39-50
Author(s):  
T.V. Yuzbashev ◽  
A.S. Fedorov ◽  
F.V. Bondarenko ◽  
A.S. Savchenko ◽  
T.V. Vybornaya ◽  
...  

The present work describes an approach that improves the properties of the strain producing L-threonine via the reduction in the biomass accumulation during fermentation. Glutamyl- and glutaminyl-tRNA synthetases were chosen as targets. Mutants carrying temperature-sensitive alleles were obtained. It was shown that the used system caused the suppression of the function of tRNA synthetases which led to a rapid arrest of the culture growth, and an increase in productivity and yield of the L-threonine synthesis. One of the temperature-sensitive strains was used to obtain under non-permissive conditions of mutants with the suppressed above phenotype. Some of these mutants accumulate less biomass and produce by 10-12% more threonine than the original strain. Escherichia coli, producing strain, threonine, aminoacyl-tRNA synthetase, ts-mutation This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project code RFMEFI61017X0011), and it was carried out using the equipment of the National Bio-Resource Center All-Russian Collection of Industrial Microorganisms, NRC «Kurchatov Institute» - GosNIIgenetika.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 393-400 ◽  
Author(s):  
J.M. Garrido-Fernandez ◽  
R. Méndez ◽  
J.M. Lema ◽  
V. Lazarova

Three Circulating Floating Bed Reactors (CFBR) R1, R2 and R3 with 20% v/v of a plastic carrier with different size distribution were operated to study the effect of the particles size of the carrier on biomass accumulation and nitrification performance. Operating conditions were similar in the three systems: ammonia concentrations around 50 mg-N–NH4+/ L, ammonia loading rates up to 1.2 kg N–NH4+/m3·d and temperatures between 14 and 27°C. Accumulation of nitrite was observed until day 65th. This w as result both of the inhibition of nitrite oxidation by free ammonia until day 20th and the insignificant accumulation of a biomass with low nitrite oxidising capacity between days 20 and 65th. Ammonia conversion rate and removal efficiency were higher in the reactor with lower particle size, R3 (nitrification rate of 1.1 kg N–NH4+/m3·d and ammonia removal of 97% at 16°C), than in R2 or R1 (nitrification rate of 1.0 kg N–NH4+/m3·d and ammonia removal of 90% at 16°C). The better efficiency in R3 was obtained as a result of the higher specific surface of the biofilm developed. Biomass activity was similar in the three reactors (2.2 and 1.12 g N/g protein · d at 30 and 15°C, respectively). Both the biomass evolution with time and biomass retention in the systems was practically not influenced by the size of particle. Biomass concentration of 1.2 g protein/L was retained in the carrier and up to 20% of the newly produced biomass was retained in the CFBRs.


Sign in / Sign up

Export Citation Format

Share Document