FEATURES OF THE PRODUCTION PROCESS OF ANCIENT AND MODERN VARIETIES OF WINTER RYE

Author(s):  
A. A. Torop ◽  
V. V. Chaykin ◽  
E. A. Torop ◽  
I. S. Brailova ◽  
S. A. Kuzmenko

We compared peculiarities of the production process of the older and modern(created 80 years after) sorts of winter rye. It is determined that the specific coenotic productivity of a modern sort is 60.6% higher.This increase is due to higher number of productive sprouts per unit area and higher sprout weight. The coenosis of modern sorts is highly resistant to lodging. The modern sort has a 33.5% higher leaf surface index and a 17.7% higher share of the leaves in the upper tier, differing in their erectile orientation in space. As for the content of total chlorophyll in the dry matter of leaves and vagina, the modern sort is inferior to the older by 30.2%during theearing period, and by 17.5%during the milky-wax ripeness period.As for the content of total chlorophyll in the sowing area, the compared sorts were practically the same, but the ratio between chlorophyll a and c was noticeably different. As for the chlorophyll content in stems, in dry matter and in the area of ​​sowing, the modern sort is inferior by1.5 times and more to the older in both observation terms. The sorts differed in the biomass accumulation and its distribution between the parts during the vegetation period. To establish the ear productivity, the older sort used only the current photosynthesis products.In conditions of an unfavorable growth year, the modern sort used previously accumulated by leaves and re-utilized assimilates. The actual and potential productivity of an ear in a modern sort is higher by 77.4 and 68.0%, respectively, but the degree of its vegetative mass supply is lower by 48.6%.Only due to the higher, by 77.4%, utilization of the mass of the sprout, the modern sort binds a greater number of grains in the ear with a higherseparate mass.Since the sharp increase in the ear productivity potential was not accompanied by the same growth of the sprout vegetative mass, the modern sort, in unfavorable conditions for growth, has tensions in the relation system between the sprout vegetative mass and pouring grain. This may be the reason of the unstable achievedyield level.

2020 ◽  
Vol 17 (36) ◽  
pp. 1004-1015
Author(s):  
Tatiana A GORYANINA

The study of winter crop cultivars was carried out in the breeding fields of the Samara Agricultural Research Institute, located in the steppe zone of the Middle Volga region, in the nursery of competitive testing in 2002-2019. For calculations, 5 varieties of winter rye, 6 varieties of winter triticale, and 2 varieties of winter wheat were taken. For scientific justification, the authors calculated the potential productivity (Yp), the actual possible potential yield (Ypp a), the maximum possible potential yield (Ypp m), the bioclimatic potential (BCP), and correlation analysis. The study aims to calculate the possible yield of winter crops to substantiate the data obtained scientifically. In the dry conditions of Bezenchuk, the maximum yield of triticale was obtained in 2017 – 7.48 t/ha, rye – 5.88 t/ha, and in 2016 for wheat – 4.65 t/ha. Potential productivity, taking into account ΣT>10 °C for the vegetation period of the crop, for triticale in 2017, 3.02 t/ha, for winter rye in 2005, 6.83 t/ha, for winter wheat in 2005-2.79 t/ha. The variation of the indicator (BCP) over the years reached significantly higher values from 0.62 to 1.16 points for winter rye, from 0.30 to 0.60 for winter triticale and winter wheat. The trend of the interrelations between yield is observed with the length of the vegetation period, with a set of climatic conditions for the springsummer period. The triticale vegetation duration depends on the precipitation in May and on the set of conditions in June. The winter rye vegetation duration depends on the temperatures during the sowing-germination period and on the sum of active temperatures during vegetation.


2009 ◽  
Vol 57 (2) ◽  
pp. 119-125
Author(s):  
G. Hadi

The dry matter and moisture contents of the aboveground vegetative organs and kernels of four maize hybrids were studied in Martonvásár at five harvest dates, with four replications per hybrid. The dry matter yield per hectare of the kernels and other plant organs were investigated in order to obtain data on the optimum date of harvest for the purposes of biogas and silage production.It was found that the dry mass of the aboveground vegetative organs, both individually and in total, did not increase after silking. During the last third of the ripening period, however, a significant reduction in the dry matter content was sometimes observed as a function of the length of the vegetation period. The data suggest that, with the exception of extreme weather conditions or an extremely long vegetation period, the maximum dry matter yield could be expected to range from 22–42%, depending on the vegetation period of the variety. The harvest date should be chosen to give a kernel moisture content of above 35% for biogas production and below 35% for silage production. In this phenophase most varieties mature when the stalks are still green, so it is unlikely that transport costs can be reduced by waiting for the vegetative mass to dry.


2021 ◽  
Vol 134 (5) ◽  
pp. 1409-1422
Author(s):  
Rodrigo José Galán ◽  
Angela-Maria Bernal-Vasquez ◽  
Christian Jebsen ◽  
Hans-Peter Piepho ◽  
Patrick Thorwarth ◽  
...  

Abstract Key message Hyperspectral data is a promising complement to genomic data to predict biomass under scenarios of low genetic relatedness. Sufficient environmental connectivity between data used for model training and validation is required. Abstract The demand for sustainable sources of biomass is increasing worldwide. The early prediction of biomass via indirect selection of dry matter yield (DMY) based on hyperspectral and/or genomic prediction is crucial to affordably untap the potential of winter rye (Secale cereale L.) as a dual-purpose crop. However, this estimation involves multiple genetic backgrounds and genetic relatedness is a crucial factor in genomic selection (GS). To assess the prospect of prediction using reflectance data as a suitable complement to GS for biomass breeding, the influence of trait heritability ($$H^{2}$$ H 2 ) and genetic relatedness were compared. Models were based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) relationship matrices to predict DMY and other biomass-related traits such as dry matter content (DMC) and fresh matter yield (FMY). For this, 270 elite rye lines from nine interconnected bi-parental families were genotyped using a 10 k-SNP array and phenotyped as testcrosses at four locations in two years (eight environments). From 400 discrete narrow bands (410 nm–993 nm) collected by an uncrewed aerial vehicle (UAV) on two dates in each environment, 32 hyperspectral bands previously selected by Lasso were incorporated into a prediction model. HBLUP showed higher prediction abilities (0.41 – 0.61) than GBLUP (0.14 – 0.28) under a decreased genetic relationship, especially for mid-heritable traits (FMY and DMY), suggesting that HBLUP is much less affected by relatedness and $$H^{2}$$ H 2 . However, the predictive power of both models was largely affected by environmental variances. Prediction abilities for DMY were further enhanced (up to 20%) by integrating both matrices and plant height into a bivariate model. Thus, data derived from high-throughput phenotyping emerges as a suitable strategy to efficiently leverage selection gains in biomass rye breeding; however, sufficient environmental connectivity is needed.


Author(s):  
Muhammad Zeeshan Mehmood ◽  
Ghulam Qadir ◽  
Obaid Afzal ◽  
Atta Mohi Ud Din ◽  
Muhammad Ali Raza ◽  
...  

AbstractSeveral biotic and abiotic stresses significantly decrease the biomass accumulation and seed yield of sesame crops under rainfed areas. However, plant growth regulators (such as Paclobutrazol) can improve the total dry matter and seed production of the sesame crop. The effects of the paclobutrazol application on dry matter accumulation and seed yield had not been studied before in sesame under rainfed conditions. Therefore, a two-year field study during 2018 and 2019 was conducted with key objectives to assess the impacts of paclobutrazol on leaf greenness, leaf area, total dry matter production and partitioning, seed shattering, and seed yield of sesame. Two sesame cultivars (TS-5 and TS-3) were treated with four paclobutrazol concentrations (P0 = Control, P1 = 100 mg L−1, P2 = 200 mg L−1, P3 = 300 mg L−1). The experiment was executed in RCBD-factorial design with three replications. Compared with P0, treatment P3 improved the leaf greenness of sesame by 17%, 38%, and 60% at 45, 85, and 125 days after sowing, respectively. However, P3 treatment decreased the leaf area of sesame by 14% and 20% at 45 and 85 days after sowing than P0, respectively. Compared with P0, treatment P3 increased the leaf area by 46% at 125 days after sowing. On average, treatment P3 also improved the total biomass production by 21% and partitioning in roots, stems, leaves, capsules, and seeds by 23%, 19%, 23%, 22%, and 40%, respectively, in the whole growing seasons as compared to P0. Moreover, under P3 treatment, sesame attained the highest seed yield and lowest seed shattering by 27% and 30%, respectively, compared to P0. This study indicated that by applying the paclobutrazol concentration at the rate of 300 mg L−1 in sesame, the leaf greenness, leaf areas, biomass accumulation, partitioning, seed yield, and shatter resistance could be improved. Thus, the optimum paclobutrazol level could enhance the dry matter accumulation and seed production capacity of sesame by decreasing shattering losses under rainfed conditions.


2009 ◽  
Vol 36 (7) ◽  
pp. 645 ◽  
Author(s):  
Dennis H. Greer ◽  
Sylvie M. Sicard

Assessing the impacts of environmental stresses on plant growth and productivity requires an understanding of the growth processes and the carbon economy that underpins this growth. Potted grapevines of the Vitis vinifera L. cv. Semillon were grown in a controlled environment and canopy growth; leaf, bunch and stem extension and net photosynthesis were routinely measured from budbreak to harvest. Allometric relationships enabled dry matter to be determined and, with net photosynthesis, used to determine the shoot carbon economy. Stems, leaves and bunches all followed a sigmoid growth pattern with leaves and stems allocated similar amounts of biomass and carbon while bunches had twice as much. Rates of carbon sequestered as biomass exceeded rates of carbon acquisition through net photosynthesis for over 25 days after budbreak. Despite the high demand for biomass in bunch growth, rates of carbon sequestration actually declined and overall, the vines maintained a positive carbon balance throughout the period of bunch growth. The Semillon shoots relied on carbon reserves to commence growth then produced a 53% carbon surplus after leaf (9%), stem (10%) and bunch (28%) growth demands were satisfied. This suggests these vines also allocated carbon to reserves to sustain the next season’s growth.


Author(s):  
Márcio H. da C. Freire ◽  
Geocleber G. de Sousa ◽  
Maria V. P. de Souza ◽  
Emanuel D. R. de Ceita ◽  
Jamili N. Fiusa ◽  
...  

ABSTRACT The objective of this study was to evaluate the performance of three rice cultivars under saline water irrigation. The experiment was carried out in full sun at the Experimental Farm of the Unilab, in Redenção, Ceará, Brazil, in January 2016. The experimental design was completely randomized (CRD), in a 5 x 3 factorial scheme [irrigation water electrical conductivity (ECw: 0.5, 1.0, 2.0, 3.0 and 4.0 dS m-1) versus three rice cultivars (C1 - Ligeirinho, C2 - Casado and C3 - Meruinho)], totaling 15 treatments, with 4 replicates of 30 seeds per cultivar. After 21 days, the following variables were evaluated: emergence percentage (EP), emergence speed index (ESI), mean time of emergence (MTE), mean speed of emergence (MSE), shoot dry matter (SDM), root dry matter (RDM) and total dry matter (TDM). The cultivar Ligeirinho showed higher tolerance to saline stress with respect to the emergence percentage, emergence speed index and mean speed of emergence. The cultivar Casado showed higher tolerance to saline stress for shoot dry matter, root dry matter and total dry matter in comparison to the other cultivars.


2022 ◽  
Vol 1 (49) ◽  
pp. 1-1
Author(s):  
Galina Konieva ◽  
◽  
Vitalii Ochirov ◽  
Vera Ivanova ◽  
Rustam Shabanov

Realization of the yield potential depends on the biological characteristics of the variety, cultivation technology and weather conditions. The article presents the results of studies carried out in 2018-2021. on the productivity of various varieties of winter rye in dryland conditions of the central zone of the Republic of Kalmykia. The fresh yield of winter rye harvested for fodder depended on the variety. Its highest index was obtained for the Saratovskaya 4 variety and amounted to 17.7 ... 26.9 t / ha. The analysis of the productivity of winter rye harvested for green fodder showed that the studied varieties provided the yield of dry matter at the level of 5.4 ... 7.1 t / ha on average for three years. All varieties have good winter hardiness. Keywords: WINTER RYE, VARIETY, NAKED FALLOW, PLANT HEIGHT, GREEN MASS, FRESH YIELD, CROP PRODUCTIVITY, DRY MATTER


Author(s):  
Camelia RACZ ◽  
Ioan HAS ◽  
Voichita HAS ◽  
Teodora ŞCHIOP ◽  
I COSTE

The maize is one of the most important crops in the world due to its high productivity and multiplexing usage in human nutrition, animal breeding and industry. The isonucleus inbred lines study has been initiated from the demand of clarifying if the cytoplasm source has a positive or negative influence on the corn cars, plants, grain traits and some maize cultural features. The research has been conducted in the experimental field provided by the Maize Breeding laboratory from ARDS Turda, ARDB Târgu-Mureş, ARDS Secuieni, ARDS Livada, ARDS Suceava in 2009. The cell nucleus transfer activity for 12 elite inbred lines on various cytoplasm types has begun in 1992 starting from the assumption that among cytoplasm of different origin could exist differences in the genetic value. The ultimate objective of breeding works is to obtain a higher grain yield and the yield quality to be at the desired level of farmers. For this reason it was studied the effect of different types of cytoplasm on grain yield, kernel dry matter at harvest and unbroken plants percentage at harvest, all these traits are important to achieve secure yield, mechanized harvestable. The kernel dry matter at harvest is one of the indicators of vegetation period, the most used in choice of early single crosses.


Author(s):  
R. A. Maksimova ◽  
E. M. Ermolova

Wheat is the main and most important food crop in most countries of the world. It is cultivated in more than 80 countries. The purpose of the work was to study the effect of the growth stimulator Agrostimulin on the sowing traits of wheat seeds. The growth regulator Agrostimulin promotes accelerated division of plant cells, the development of a more powerful root system, an increase in the leaf surface area and chlorophyll content, reduces the phytotoxic effect of pesticides, has an antimutagenic effect, improves the quality of grown products, increases productivity, plant resistance to diseases, stress factors, resistance to adverse environmental factors (hypothermia, overheating, lack or excess of light and moisture). Its use makes it possible to reduce the rates of application of pesticides when using the drug 3–5 times during the vegetation period. The use of the growth stimulator Agrostimulin in the cultivation of spring wheat Omskaya 36 has been reflected in the article. Studies on the sowing traits of spring wheat seeds, phenological observations have been carried out. The yield of wheat Omskaya 36 variety with the use of the growth regulator Agrostimulin was 20 c/ha, which was by 2,1 c/ha or 11,7 % higher compared to the previous year. It has been revealed that the length of the vegetation period in wheat treated with the growth regulator Agrostimulin was 89 days, which was by 7 days less compared to the control. Thus, it has been experimentally proved that the treatment of spring wheat seeds Omskaya 36 with the growth regulator Agrostimulin shortens the growing season and increases its yield.


Sign in / Sign up

Export Citation Format

Share Document