Potassium partitioning and redistribution as a function of K-use efficiency under K deficiency in sweet potato ( Ipomoea batatas L.)

2017 ◽  
Vol 211 ◽  
pp. 147-154 ◽  
Author(s):  
Ji dong Wang ◽  
Pengfu Hou ◽  
Guo peng Zhu ◽  
Yue Dong ◽  
Zhang Hui ◽  
...  
2018 ◽  
Vol 69 (5) ◽  
pp. 506 ◽  
Author(s):  
Jidong Wang ◽  
Guopeng Zhu ◽  
Yue Dong ◽  
Hui Zhang ◽  
Zed Rengel ◽  
...  

Rooted single leaves of sweet potato (Ipomoea batatas L.) produce and translocate photosynthates, thus representing an ideal model for characterising the source–sink relationships and responses to various environments. A hydroponics culture study was conducted with rooted single leaves of sweet potato to determine intraspecific variation in growth, biomass partitioning, and associated physiological changes in response to variable potassium (K) supply among genotypes Ji22 (low K-use efficiency), Nan88 (high K-uptake efficiency) and Xu28 (high K-use efficiency). Potassium deficiency suppressed biomass accumulation in blades, petioles and roots in all three genotypes. Root length of diameters <0.25 mm and 0.25–0.5 mm was significantly less for K-deficient than K-sufficient roots of all genotypes, but the difference was proportionally greater in the K-inefficient genotype Ji22 than the other two genotypes. Potassium deficiency also severely inhibited net photosynthesis of blades in Nan88 and Ji22, as well reducing photosynthate translocation, increasing starch, hexose and sucrose concentrations, and decreasing K concentration in blades. The genotypes varied in photosynthesis-related responses to the K deficiency. Xu28 had greater blade K concentration and net photosynthesis as well as stable maximum quantum yield of photosystem II (FV/FM, with FV = FM – F0) under K deficiency, possibly because of a better source–sink balance and more efficient translocation of photosynthates to roots and K to blade compared with genotypes Ji22 and Nan88. Impaired phloem loading during K deficiency was associated with a decline in photosynthetic rate and decreased carbohydrate supply from blades, resulting in restricted root growth.


Author(s):  
Amsalu Gobena Roro ◽  
Mihret Tesfaye

Introduction: The sweet potato (Ipomoea batatas Lam.), is one of the root and tuber crops grown from low land to high land region of Ethiopia. However, its productivity depends on adaptability and tolerance to different environmental stresses and the capacity of the crop to enhance water use efficiency under moisture stress conditions. The objective of this study was to evaluate impact of irrigation interval on morpho-physiological characteristics of sweet potato varieties. Methodology: The trial was a 3 x 2 factorial arrangement in CRD design consisting: three irrigation intervals (daily-control), four days and seven days interval) combined with two sweet potato genotypes (Hawassa-83 and Kulfo) with three replications. Results: The morpho-physiological indicators, morphological traits, water use efficiency (WUE), Relative leaf water content (RLWC), leaf gas exchange, stomata density, and tuber yield were evaluated. The result indicated that morphological traits were significantly (P≤0.05) responded to genotype and irrigation frequencies. As compared to daily irrigation, an extended watering interval to seven days irrigation interval significantly reduced leaf number, vine length, branch number and internode length by 55.42, 19.83 cm, 2.17 and 0.35 cm, respectively. Stomata density was strongly responded to genotypes than effect of irrigation frequency. Genotype Hawassa-83 had approximately 2.0 more stomata per mm2 than genotype Kulfo regardless to irrigation frequency. The interaction effect between genotype and irrigation frequency revealed significant influence on photosynthesis and transpiration rate. The rate of assimilate accumulation was significantly reduced (by 9.97


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 99
Author(s):  
Esteban Burbano-Erazo ◽  
Carina Cordero ◽  
Iván Pastrana ◽  
Laura Espitia ◽  
Evelin Gomez ◽  
...  

Sweet potato is a crop with a wide capacity to adapt to adverse conditions. To study the tolerance of the sweet potato to a low-altitude environment, 34 genotypes comprising three groups from different altitude conditions ranging from 18–599, 924–1298, 1401–2555 meters above sea level were evaluated. These genotypes were evaluated through ecophysiological parameters: net photosintetic rate (Pn), stomatal conductance (GS), transpiration (E), leaf internal CO2 (ICO2), vapor pressure deficit (VPD) and leaf internal temperate (LT). sSubsequently, water use efficiency (WUE) and carboxylation efficiency index (CEI) were estimated. Simultaneously, morpho-agronomic characterization of the genotypes was conducted including descriptors and morpho-colorimetric parameters. A wide ecophysiological variability was found among genotypes from high, intermediate and low altitudes, when those were evaluated under low altitude conditions. The genotypes that presented major soil coverage efficiency and leaf size showed greater Pn, WUE and CEI, and Low VPD and E, aspects that benefited the ability to form roots the under low-altitude environment. The altitudinal origin of the genotypes influenced the ecophysiological response under low altitude conditions. The capacity of certain sweet potato genotypes to tolerate low altitude conditions were due to to different mechanisms, such as certain morphoagronomic traits that allowed them to adjust their physiological processes, especially those related to photosynthesis.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
D Rosas-Ramírez ◽  
R Pereda-Miranda
Keyword(s):  

2018 ◽  
Vol 15 (2) ◽  
pp. 146
Author(s):  
BRILIAN DINANTI ◽  
FITRI HANDAJANI

<p>Liver is an organ with complex metabolism. When the liver is inflamed, cellular immunity will defend against inflammatory agents by stimulating immune cells to produce reactive oxygen species (ROS). Excessive ROS accumulation cause oxydative stress with increased  liver malondialdehyde (MDA) level. Some researches showed that purple sweet potato contain flavonoids (anthocyanins) that functioned as antioxydants. This study aimed to show the prophylactic effect of purple sweet potato extract to the liver MDA level of male Wistar rats induced by carrageenan.</p><p>This study used post-only control group method using 18 male Wistar rats divided into 3 groups: group of rats without treatment, group of rats induced by 0,1 ml of 1% carrageenan by intraplantar injection on day-8, and group of rats given with 872 mg/kgBW of purple sweet potato extract for 7 days and induced by 0,1 ml of 1% carrageenan. In the end of the study, the liver MDA levels were measured by Thio-Barbituric Acid method on each groups.</p><p>The results of One-Way ANOVA test showed there was no significant difference (p = 0,290) between group of rats without treatment (<em>x̅</em>= 207,50) and group of rats induced by carrageenan (<em>x̅</em>=233,17). Then, there is no significant difference (p = 0.978) between group of rats induced by carrageenan and group of rats given with prophylactic purple sweet potato extract and induced by carrageenan (<em>x̅</em>= 232,50).</p><p>The conclusion of this study is giving intraplantar injection of carrageenan can increase liver MDA level insignificantly and giving prophylactic purple sweet potato extract has an effect to decrease the liver MDA level of rats induced by carragenan insignificantly because it contains anthocyanins as antioxidants.</p><p> </p><strong>Keywords: </strong>Liver, <em>Ipomoea batatas</em> L., Malondialdehyde, Anthocyanins


Agrotek ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Andrew B. Pattikawa ◽  
Antonius Suparno ◽  
Saraswati Prabawardani

<em>Sweet potato is an important staple food crop especially for the local people of Central Highlands Jayawijaya. There are many accessions that have always been maintained its existence to enrich their various uses. Traditionally, sweet potato accessions were grouped based on the utilization, such as for animal feed, cultural ceremonies, consumption for adults, as well as for infants and children. This study was aimed to analyze the nutritional value of sweet potatoes consumed by infants and children of the Dani tribe. Chemical analyses were conducted at the Laboratory of Post-Harvest Research and Development Center, Cimanggu, Bogor. The results showed that each of 4 (four) sweet potato accessions which were consumed by infants and children had good nutrient levels. Accession Sabe showed the highest water content (72.56%), vitamin C (72.71 mg/100 g), Fe (11.85 mg/100 g), and K levels (130.41 mg / 100 grams). The highest levels of protein (1.44%), fat (1.00%), energy (154.43 kkal/100 gram), carbohydrate (35.47%), starch (30.26%), reducing sugar (3.44%), riboflavin (0.18 mg/100 g), and vitamin A (574.40 grams IU/100 were produced by accession Manis. On the other hand, accession Saborok produced the highest value for ash content (1.32%), vitamin E (28.30 mg/100 g), and ?-carotene (64.69 ppm). The highest level of crude fiber (1.81 %) and thiamin (0.36 mg/100 g) was produced by accession Yuaiken.</em>


2018 ◽  
Vol 44 (12) ◽  
pp. 1858 ◽  
Author(s):  
Jian-Gang AN ◽  
Fu JING ◽  
Yi DING ◽  
Yi XIAO ◽  
Hao-Hao SHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document