Corilagin from longan seed: Identification, quantification, and synergistic cytotoxicity on SKOv3ip and hey cells with ginsenoside Rh2 and 5-fluorouracil

2018 ◽  
Vol 119 ◽  
pp. 133-140 ◽  
Author(s):  
Ni Li ◽  
Zhican Lin ◽  
Wei Chen ◽  
Yi Zheng ◽  
Yanlin Ming ◽  
...  
Author(s):  
Douglas William Jones

Within the past 20 years, archaeobotanical research in the Eastern United States has documented an early agricultural complex before the dominance of the Mesoamerican domesticates (corn, beans, and squash) in late prehistoric and historic agricultural systems. This early agricultural complex consisted of domesticated plants such as Iva annua var.macrocarpa (Sumpweed or Marshelder), Hellanthus annuus (Sunflower) and Chenopodium berlandieri, (Goosefoot or Lasbsquarters), and heavily utilized plants such as Polygonum erectum (Erect Knotweed), Phalaris caroliniana (May grass), and Hordeum pusillum (Little Barley).Recent research involving the use of Scanning Electron Microscopy (SEM) specifically on Chenopodium has established diagnostic traits of wild and domesticated species seeds. This is important because carbonized or uncarbonized seeds are the most commonly recovered Chenopodium material from archaeological sites. The diagnostic seed traits assist archaeobotanists in identification of Chenopodium remains and provide a basis for evaluation of Chenopodium utilization in a culture's subsistence patterns. With the aid of SEM, an analysis of Chenopodium remains from three Late Prehistoric sites in Northwest Iowa (Blood Run [Oneota culture], Brewster [Mill Creek culture], and Chan-Ya-Ta [Mill Creek culture]) has been conducted to: 1) attempt seed identification to a species level, 2) evaluate the traits of the seeds for classification as either wild or domesticated, and 3) evaluate the role of Chenopodium utilization in both the Oneota and Mill Creek cultures.


2020 ◽  
Author(s):  
Satsuki Murakami ◽  
Susumu Suzuki ◽  
Ichiro Hanamura ◽  
Kazuhiro Yoshikawa ◽  
Ryuzo Ueda ◽  
...  

2001 ◽  
Vol 280 (5) ◽  
pp. 1229-1236 ◽  
Author(s):  
Chih-Chi Andrew Hu ◽  
Yu-Hsiu Lee ◽  
Chih-Hang Anthony Tang ◽  
Jiin-Tsuey Cheng ◽  
Jaang-Jiun Wang

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Ying Zhu ◽  
Kun-Bin Ke ◽  
Zhong-Kun Xia ◽  
Hong-Jian Li ◽  
Rong Su ◽  
...  

Abstract Background Cyclin-dependent kinases 2/4/6 (CDK2/4/6) play critical roles in cell cycle progression, and their deregulations are hallmarks of hepatocellular carcinoma (HCC). Methods We used the combination of computational and experimental approaches to discover a CDK2/4/6 triple-inhibitor from FDA approved small-molecule drugs for the treatment of HCC. Results We identified vanoxerine dihydrochloride as a new CDK2/4/6 inhibitor, and a strong cytotoxicdrugin human HCC QGY7703 and Huh7 cells (IC50: 3.79 μM for QGY7703and 4.04 μM for Huh7 cells). In QGY7703 and Huh7 cells, vanoxerine dihydrochloride treatment caused G1-arrest, induced apoptosis, and reduced the expressions of CDK2/4/6, cyclin D/E, retinoblastoma protein (Rb), as well as the phosphorylation of CDK2/4/6 and Rb. Drug combination study indicated that vanoxerine dihydrochloride and 5-Fu produced synergistic cytotoxicity in vitro in Huh7 cells. Finally, in vivo study in BALB/C nude mice subcutaneously xenografted with Huh7 cells, vanoxerine dihydrochloride (40 mg/kg, i.p.) injection for 21 days produced significant anti-tumor activity (p < 0.05), which was comparable to that achieved by 5-Fu (10 mg/kg, i.p.), with the combination treatment resulted in synergistic effect. Immunohistochemistry staining of the tumor tissues also revealed significantly reduced expressions of Rb and CDK2/4/6in vanoxerinedihydrochloride treatment group. Conclusions The present study isthe first report identifying a new CDK2/4/6 triple inhibitor vanoxerine dihydrochloride, and demonstrated that this drug represents a novel therapeutic strategy for HCC treatment.


2021 ◽  
Vol 22 (9) ◽  
pp. 4955
Author(s):  
Guadalupe Rosario Fajardo-Orduña ◽  
Edgar Ledesma-Martínez ◽  
Itzen Aguiñiga-Sánchez ◽  
María de Lourdes Mora-García ◽  
Benny Weiss-Steider ◽  
...  

Acute myeloid leukemia (AML), the most common type of leukemia in older adults, is a heterogeneous disease that originates from the clonal expansion of undifferentiated hematopoietic progenitor cells. These cells present a remarkable variety of genes and proteins with altered expression and function. Despite significant advances in understanding the molecular panorama of AML and the development of therapies that target mutations, survival has not improved significantly, and the therapy standard is still based on highly toxic chemotherapy, which includes cytarabine (Ara-C) and allogeneic hematopoietic cell transplantation. Approximately 60% of AML patients respond favorably to these treatments and go into complete remission; however, most eventually relapse, develop refractory disease or chemoresistance, and do not survive for more than five years. Therefore, drug resistance that initially occurs in leukemic cells (primary resistance) or that develops during or after treatment (acquired resistance) has become the main obstacle to AML treatment. In this work, the main molecules responsible for generating chemoresistance to Ara-C in AML are discussed, as well as some of the newer strategies to overcome it, such as the inclusion of molecules that can induce synergistic cytotoxicity with Ara-C (MNKI-8e, emodin, metformin and niclosamide), subtoxic concentrations of chemotherapy (PD0332991), and potently antineoplastic treatments that do not damage nonmalignant cells (heteronemin or hydroxyurea + azidothymidine).


Sign in / Sign up

Export Citation Format

Share Document