Chemical composition, antioxidant, and anti-diabetic activities of ethyl acetate fraction of Stachys riederi var. japonica Miq in streptozotocin-induced type 2 diabetic mice

2021 ◽  
pp. 112374
Author(s):  
Kandasamy Saravanakumar ◽  
SeonJu Park ◽  
Arokia Vijaya Anand Mariadoss ◽  
Anbazhagan Sathiyaseelan ◽  
Veeraraghavan Vishnupriya ◽  
...  
2017 ◽  
Vol 12 (4) ◽  
pp. 359
Author(s):  
Lai Wang ◽  
Debmalya Roy ◽  
Sen Sen Lin ◽  
Sheng Tao Yuan ◽  
Li Sun

<p class="Abstract">The aim of this study was to investigate the hypoglycemic effect of Camellia chrysantha using type 2 diabetic mice model. The ethyl acetate/dichloromethane extract exhibited the most effective hypoglycemic effect. Compared to model group, all the three groups of C. chrysantha extracts significantly improved the mice’s behavioral performance, weight, reduced water and food intake. The ethyl acetate/dichloromethane extract of C. chrysantha significantly reduced the blood glucose level in the first week after administration and the crude extract also showed a significant effect after longer time administration. All the three extracts reduced the fasting blood glucose level to a certain extent and ethyl acetate/dichloromethane extract exhibited most significant effect among all the three extracts.</p><p><strong>Video Clip of Methodology</strong>:</p><p>1 min 31 sec   <a href="https://www.youtube.com/v/X_H_vaA7MgE">Full Screen</a>   <a href="https://www.youtube.com/watch?v=X_H_vaA7MgE">Alternate</a></p>


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Kok Keong Tan ◽  
Kah Hwi Kim

The antidiabetic potential ofAlternanthera sessilisRed was investigated using the obese type 2 diabetic rats induced by high fat diet and streptozotocin. Three fractions (hexane, ethyl acetate, and water) were obtained from the crude ethanol extract ofAlternanthera sessilisRed.Alternanthera sessilisRed ethyl acetate fraction (ASEAF) was found to possess the most potent antihyperglycemic effect through oral glucose tolerance test. The ASEAF was subsequently given to the diabetic rats for two weeks. It was found that two-week administration of ASEAF reduces the fasting blood glucose level, triglyceride level, and free fatty acid level of the rats. ASEAF-treated diabetic rats showed higher pancreatic insulin content and pancreatic total superoxide dismutase activity compared to the untreated diabetic rats. Also, the insulin sensitivity indexes suggested that ASEAF ameliorates the insulin resistant state of the diabetic rats. In conclusion, ASEAF could be developed into a potential antidiabetic agent for the management of type 2 diabetes.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 557
Author(s):  
Stephanie D. Burr ◽  
James A. Stewart

Cardiovascular disease, specifically heart failure, is a common complication for individuals with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix (ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accumulate within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses. Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate this cascade, we used genetically different cardiac fibroblasts from non-diabetic, diabetic, non-diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudosubstrate PKC-ζ). We examined changes in expression of proteins implicated as markers for myofibroblasts (α-SMA) and inflammation/oxidative stress (NF-κB and SOD-1). In addition, oxidative stress was also assessed by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the AGE/RAGE cascade to promote and maintain α-SMA expression in cardiac fibroblasts. Moreover, Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF-κB expression as well as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally, knocking down Rap1a expression resulted in an increase in SOD-1 expression suggesting that Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade. These results demonstrated that Rap1a contributes to the myofibroblast population within the heart via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular complications attributed to AGE/RAGE signaling.


2021 ◽  
Author(s):  
Yongli Zhang ◽  
Tao Wu ◽  
Wen Li ◽  
Yunjiao Zhao ◽  
Hairong Long ◽  
...  

Previous study suggests Lactobacillus casei exhibit antihyperglycemic activity, however, the molecular mechanism has rarely been elucidated. Here, the anti-diabetic effects and underlying mechanisms of Lactobacillus casei LC89 were investigated in...


Sign in / Sign up

Export Citation Format

Share Document