THE COMPETENCY OF SINGLE EUPLOID BLASTOCYSTS FROM IN VITRO-MATURED (IVM) HUMAN OOCYTES WITH PREIMPLANTATION GENETIC TESTING FOR ANEUPLOIDY (PGT-A) AFTER CONTROLLED OVAIAN HYPERSTIMULATION (COH)

2021 ◽  
Vol 116 (3) ◽  
pp. e278-e279
Author(s):  
Jeong Hee Moon ◽  
Qianying Zhao ◽  
Vikrant V. Reddy ◽  
Jinnuo Han ◽  
Yuan Chang ◽  
...  
2021 ◽  
Vol 15 ◽  
pp. 263349412110098
Author(s):  
Rhea Chattopadhyay ◽  
Elliott Richards ◽  
Valerie Libby ◽  
Rebecca Flyckt

Uterus transplantation is an emerging treatment for uterine factor infertility. In vitro fertilization with cryopreservation of embryos prior is required before a patient can be listed for transplant. Whether or not to perform universal preimplantation genetic testing for aneuploidy should be addressed by centers considering a uterus transplant program. The advantages and disadvantages of preimplantation genetic testing for aneuploidy in this unique population are presented. The available literature is reviewed to determine the utility of preimplantation genetic testing for aneuploidy in uterus transplantation protocols. Theoretical benefits of preimplantation genetic testing for aneuploidy include decreased time to pregnancy in a population that benefits from minimization of exposure to immunosuppressive agents and decreased chance of spontaneous abortion requiring a dilation and curettage. Drawbacks include increased cost per in vitro fertilization cycle, increased number of required in vitro fertilization cycles to achieve a suitable number of embryos prior to listing for transplant, and a questionable benefit to live birth rate in younger patients. Thoughtful consideration of whether or not to use preimplantation genetic testing for aneuploidy is necessary in uterus transplant trials. Age is likely a primary factor that can be useful in determining which uterus transplant recipients benefit from preimplantation genetic testing for aneuploidy.


2019 ◽  
Vol 36 (12) ◽  
pp. 2557-2561 ◽  
Author(s):  
Katrina Merrion ◽  
Melissa Maisenbacher

Abstract Purpose To report the unbalanced chromosome rearrangement rate and overall aneuploidy rate in day 5/6 embryos from a series of patients who underwent in vitro fertilization (IVF) with preimplantation genetic testing for structural rearrangements (PGT-SR) for the pericentric inversion 9 variant, inv(9)(p11q13) or inv(9)(p12q13), with concurrent 24 chromosome preimplantation genetic testing for aneuploidy (PGT-A). Methods This was a retrospective cohort analysis. IVF cycles and embryo biopsies were performed by referring clinics. Fifty-two trophectoderm biopsy samples from seven couples were sent to a single lab for PGT-SR for an inversion 9 variant with concurrent 24 chromosome PGT-A using single-nucleotide polymorphism (SNP) microarrays with bioinformatics. Results The unbalanced rearrangement rate for this embryo cohort was 0/52 (0.0%); mean maternal age per embryo was 33.3 years (range 21–39 years). The overall euploid rate was 61.5% and aneuploidy rate was 38.5%. Conclusions Chromosome 9 pericentric inversions did not result in unbalanced structural rearrangements in day 5/6 embryo samples, supporting that this population variant is not associated with increased reproductive risks.


2021 ◽  
pp. medethics-2020-106940
Author(s):  
Emily C Lisi

Madison Kilbride recently argued that insurance (eg, Centers for Medicare & Medicaid Services (CMS)) should cover in vitro fertilisation with preimplantation genetic testing (IVF-PGT) services for couples at high risk of having a child affected with a genetic condition. She argues that IVF-PGT meets CMS’s definition of ‘medically necessary care’, where such care includes ‘services or supplies needed to diagnose or treat an illness, injury, condition, disease or its symptoms’. Kilbride argues that IVF-PGT satisfies this definition in two ways: as a diagnostic tool and as a treatment. Contradicting Kilbride, however, I argue that IVF-PGT provides neither diagnosis nor treatment under CMS’s definition. Thus, as long as we accept CMS’s definition of medically necessary care—which Kilbride does, explicitly—it follows that IVF-PGT does not count as medically necessary care. Still, there may be other reasons to conclude that IVF-Preimplantation genetic testing should be covered, and so, it would be a mistake to reject Kilbride’s conclusion altogether. The problem is simply that Kilbride’s argument—that the procedure should be covered because it is medically necessary per CMS’s definition—is not sound. I conclude by discussing a number of other genetic services that are not currently being covered despite the fact that (unlike IVF-PGT) they do seem to satisfy CMS’s definition of ‘medically necessary diagnosis or treatment’. These services, I argue, should be provided under CMS before we consider expanding coverage to include elective procedures such as IVF-PGT.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 697
Author(s):  
Bogdan Doroftei ◽  
Loredana Nemtanu ◽  
Ovidiu-Dumitru Ilie ◽  
Gabriela Simionescu ◽  
Iuliu Ivanov ◽  
...  

Background: Congenital disorder of glycosylation (CDG) is a severe morphogenic and metabolic disorder that affects all of the systems of organs and is caused by a mutation of the gene PMM2, having a mortality rate of 20% during the first months of life. Results: Here we report the outcome of an in vitro fertilisation (IVF) cycle associated with preimplantation genetic testing for monogenic diseases (PGT-M) in a Romanian carrier couple for CDG type Ia with distinct mutations of the PMM2 gene. The embryonic biopsy was performed on day five of the blastocyst stage for six embryos. The amplification of the whole genome had been realized by using the PicoPLEX WGA kit. Using the Array Comparative Genomic Hybridisation technique, we detected both euploid and aneuploid embryos. The identification of the PMM2 mutation on exon 5 and exon 6 was performed for the euploid embryos through Sanger Sequencing with specific primers on ABI 3500. Of the six embryos tested, only three were euploid. One had compound heterozygosity and the remaining two were simple heterozygotes. Conclusion: PGT-M should be strongly considered for optimising embryo selection in partners with single-gene mutations in order to prevent transmission to the offspring.


2020 ◽  
Vol 114 (3) ◽  
pp. e106
Author(s):  
Stephanie M. Hallisey ◽  
Reeva B. Makhijani ◽  
Jeffrey Thorne ◽  
Prachi N. Godiwala ◽  
John Nulsen ◽  
...  

2020 ◽  
Vol 35 (2) ◽  
pp. 434-445 ◽  
Author(s):  
Joseph H Lipton ◽  
Mahdi Zargar ◽  
Ellen Warner ◽  
Ellen E Greenblatt ◽  
Esther Lee ◽  
...  

Abstract STUDY QUESTION Is it cost-effective to use in vitro fertilisation and preimplantation genetic testing of monogenic defects (IVT/PGT-M) to prevent transmission of BRCA1/2 mutations to second-generation new births in comparison with naturally conceived births? SUMMARY ANSWER In this cost-effectiveness analysis, we found that IVF/PGT-M is cost-effective for BRCA1 and BRCA2 mutation carriers if using a willingness to pay of $50 000 per quality-adjusted life-year (QALY). WHAT IS KNOWN ALREADY Carriers of a BRCA1 or BRCA2 mutation have a significantly increased risk of several types of cancer throughout their lifetime. The cost of risk reduction, screening and treatment of cancer in this population is high. In addition, there is a 50% chance of passing on this genetic mutation to each child. One option to avoid transmission of an inherited deleterious gene to one’s offspring involves in vitro fertilisation with preimplantation genetic testing. STUDY DESIGN, SIZE, DURATION We implemented a state transition model comparing the healthcare impact of a cohort of healthy children born after IVF/PGT-M, who have a population risk of developing cancer, to a cohort of naturally conceived live-births, half of whom are carriers of the BRCA mutation. Transition probabilities are based on published sources, a lifetime horizon and a perspective of a provincial Ministry of Health in Canada. PARTICIPANTS/MATERIALS, SETTING, METHODS The target population is the second-generation new births who have at least one parent with a known BRCA1 or BRCA2 mutation. MAIN RESULTS AND THE ROLE OF CHANCE At a willingness-to-pay threshold of $50 000 per QALY, IVF/PGT-M is a cost-effective intervention for carriers of either BRCA mutation. For BRCA1, the incremental cost-effectiveness ratio (ICER) for IVF/PGT-M is $14 242/QALY. For BRCA2, the ICER of intervention is $12 893/QALY. Probabilistic sensitivity analysis results show that IVF/PGT-M has a 98.4 and 97.3% chance of being cost-effective for BRCA1 and BRCA2 mutation carriers, respectively, at the $50 000/QALY threshold. LIMITATIONS, REASONS FOR CAUTION Our model did not include the short-term negative effect of IVF/PGT-M on the woman’s quality of life; in addition, our model did not consider any ethical issues related to post-implantation genetic testing. WIDER IMPLICATIONS OF THE FINDINGS In countries in which the healthcare of a large segment of the population is covered by a single payer system such as the government, it would be cost-effective for that payer to cover the cost of IVF/PGT-M for couples in which one member has a BRCA mutation, in order to avoid the future costs and disutility of managing offspring with an inherited BRCA mutation. STUDY FUNDING/COMPETING INTEREST(S) Dr Wong’s research program was supported by the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council (NSERC), the Canadian Liver Foundation and an Ontario Ministry of Research, Innovation and Science Early Researcher Award. All authors declared no conflict of interests.


2019 ◽  
Vol 116 (28) ◽  
pp. 14105-14112 ◽  
Author(s):  
Lei Huang ◽  
Berhan Bogale ◽  
Yaqiong Tang ◽  
Sijia Lu ◽  
Xiaoliang Sunney Xie ◽  
...  

Preimplantation genetic testing for aneuploidy (PGT-A) with trophectoderm (TE) biopsy is widely applied in in vitro fertilization (IVF) to identify aneuploid embryos. However, potential safety concerns regarding biopsy and restrictions to only those embryos suitable for biopsy pose limitations. In addition, embryo mosaicism gives rise to false positives and false negatives in PGT-A because the inner cell mass (ICM) cells, which give rise to the fetus, are not tested. Here, we report a critical examination of the efficacy of noninvasive preimplantation genetic testing for aneuploidy (niPGT-A) in the spent culture media of human blastocysts by analyzing the cell-free DNA, which reflects ploidy of both the TE and ICM. Fifty-two frozen donated blastocysts with TE biopsy results were thawed; each of their spent culture medium was collected after 24-h culture and analyzed by next-generation sequencing (NGS). niPGT-A and TE-biopsy PGT-A results were compared with the sequencing results of the corresponding embryos, which were taken as true results for aneuploidy reporting. With removal of all corona-cumulus cells, the false-negative rate (FNR) for niPGT-A was found to be zero. By applying an appropriate threshold for mosaicism, both the positive predictive value (PPV) and specificity for niPGT-A were much higher than TE-biopsy PGT-A. Furthermore, the concordance rates for both embryo ploidy and chromosome copy numbers were higher for niPGT-A than TE-biopsy PGT-A. These results suggest that niPGT-A is less prone to errors associated with embryo mosaicism and is more reliable than TE-biopsy PGT-A.


Sign in / Sign up

Export Citation Format

Share Document