scholarly journals Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review

2016 ◽  
Vol 57 ◽  
pp. 128-134 ◽  
Author(s):  
Sara Elmahdi ◽  
Ligia V. DaSilva ◽  
Salina Parveen
2018 ◽  
Vol 7 (11) ◽  
Author(s):  
Sridevi Devadas ◽  
Subha Bhassu ◽  
Tze Chiew Christie Soo ◽  
Fatimah M. Yusoff ◽  
Mohamed Shariff

We sequenced the genome of Vibrio parahaemolyticus strain ST17.P5-S1, isolated from Penaeus vannamei cultured in the east coast of Peninsular Malaysia. The strain contains several antibiotic resistance genes and a plasmid encoding the Photorhabdus insect-related (Pir) toxin-like genes, pirAvp and pirBvp, associated with acute hepatopancreatic necrosis disease (AHPND).


2008 ◽  
Vol 15 (10) ◽  
pp. 1541-1546 ◽  
Author(s):  
S. Datta ◽  
M. E. Janes ◽  
J. G. Simonson

ABSTRACT Mice were immunized by injection of Vibrio parahaemolyticus ATCC 17802 polar flagellin in order to produce monoclonal antibodies (mAbs). mAbs were analyzed by anti-H enzyme-linked immunosorbent assay using V. parahaemolyticus polar flagellar cores. The mAb exhibiting the highest anti-H titer was coated onto Cowan I Staphylococcus aureus cells at a concentration of 75 μg/ml cell suspension and used for slide coagglutination. Of 41 isolates identified genetically as V. parahaemolyticus, 100% coagglutinated with the anti-H mAb within 30 s, and the mAb did not react with 30 isolates identified as Vibrio vulnificus. A strong coagglutination reaction with V. parahaemolyticus ATCC 17802 was still observed when the S. aureus cells were armed with as little as 15 μg of mAb/ml S. aureus cell suspension. At this concentration, the mAb cross-reacted with three other Vibrio species, suggesting that they share an identical H antigen or antigens. The anti-H mAb was then used to optimize an immunomagnetic separation protocol which exhibited from 35% to about 45% binding of 102 to 103 V. parahaemolyticus cells in phosphate-buffered saline. The mAb would be useful for the rapid and selective isolation, concentration, and detection of V. parahaemolyticus cells from environmental sources.


2021 ◽  
Author(s):  
Oluwakemi Victoria Ayodele ◽  
Anthony Ifeanyi Okoh

Abstract Background: The use of antibiotics globally has helped reduce mortality and morbidity rate due to its ability to effectively treat bacterial infections in both humans and animals. However, the menace of antimicrobial resistance has become a challenge to public health due to its increased mortality and morbidity rate. This study determined the antibiogram pattern of non-cholera causing Vibrio species against a panel of 11 antibiotics that are wildly used for treatment. Multiple antibiotic resistance phenotype, multiple antibiotic resistant indices and minimum inhibitory concentration (MIC) of test antibiotics were also determined.Results: Polymerase chain reaction (PCR) was used to confirm 100 isolates of Vibrio parahaemolyticus, 82 and 46 isolates of Vibrio vulnificus and Vibrio fluvialis respectively, collected from the culture collections of the Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare. Thereafter, disc diffusion method was used to determine the antibiogram pattern of target non-cholera causing Vibrio species against a panel of 11 antibiotics that are of clinical importance. The highest rate of Vibrio parahaemolyticus resistance was observed against tetracycline (22 %) and nalidixic acid (16 %). Vibrio fluvialis also displayed highest rate of resistance against tetracycline (28 %) and nalidixic acid (28 %), while Vibrio vulnificus isolates exhibited highest rate resistance against imipenem (40 %) and tetracycline (22 %). A total of 38 MARP patterns were observed and the MAR indices ranged between 0.3 and 0.8. Against the resistant Vibrio parahaemolyticus and Vibrio fluvialis isolates, minimum inhibitory concentration ranged from 16 µg/ml to 2048 µg/ml for both tetracycline and nalidixic acid, while against Vibrio vulnificus isolates, minimum inhibitory concentration ranged from 8 µg/ml to 256 µg/ml for both imipenem and nalidixic acid. Conclusions: Results obtained from this study is an indication that antibiotic resistant bacteria that could pose as threat to health of humans and animals are present in the environment.


2005 ◽  
Vol 68 (7) ◽  
pp. 1454-1456 ◽  
Author(s):  
YI-CHENG SU ◽  
JINGYUN DUAN ◽  
WEN-HSIN WU

The thiosulfate–citrate–bile salts–sucrose agar (TCBS) used in the most-probable-number method for detecting Vibrio parahaemolyticus cannot differentiate growth of V. parahaemolyticus from Vibrio vulnificus or Vibrio mimicus. This study examined the selectivity and specificity of Bio-Chrome Vibrio medium (BCVM), a chromogenic medium that detects V. parahaemolyticus on the basis of the formation of distinct purple colonies on the medium. A panel consisting of 221 strains of bacteria, including 179 Vibrio spp. and 42 non-Vibrio spp., were examined for their ability to grow and produce colored colonies on BCVM. Growth of Salmonella, Shigella, Escherichia coli, Enterobacter cloacae, Yersinia enterocolitica, and Aeromonas was inhibited by both BCVM and TCBS. All 148 strains of V. parahaemolyticus grew on BCVM, and 145 of them produced purple colonies. The remaining 31 Vibrio spp., except one strain of Vibrio fluvialis, were either unable to grow or produced blue-green or white colonies on BCVM. Bio-Chrome Vibrio medium was capable of differentiating V. parahaemolyticus from other species, including V. vulnificus and V. mimicus. Further studies are needed to evaluate the sensitivity and specificity of BCVM for detecting V. parahaemolyticus in foods.


2007 ◽  
Vol 53 (7) ◽  
pp. 919-924 ◽  
Author(s):  
Kavitha Boinapally ◽  
Xiuping Jiang

The objective of this study was to assess and differentiate wild-caught South Carolina (SC) shrimps from imported shrimps on the basis of microbiological analysis. Seven wild-caught SC shrimp and 13 farm-raised imported shrimp samples were analyzed. Total plate counts from wild-caught shrimp samples ranged from 4.3 to 7.0 log10 CFU/g, whereas counts from imported shrimp samples ranged from 3.2 to 5.7 log10 CFU/g. There was no difference (P > 0.05) between total bacterial counts of wild-caught SC shrimp and farm-raised imported shrimp. However, the percentages of bacteria with reduced susceptibility towards ceftriaxone and tetracycline were higher (P < 0.05) for farm-raised shrimp than for wild-caught samples. Salmonella spp. detected only in one farm-raised sample was resistant to ampicillin, ceftriaxone, gentamicin, streptomycin, and trimethoprim. Vibrio vulnificus was detected in both wild-caught and farm-raised shrimp samples; however, only the isolate from farm-raised shrimp was resistant to nalidixic acid and trimethoprim. Escherichia coli detected in one wild-caught sample was resistant to ampicillin. Both Listeria spp. and Salmonella spp. were absent with wild-caught SC samples. Therefore, the presence of more ceftriaxone- and tetracycline-resistant bacteria and the observed antimicrobial resistance phenotypes of isolates from the imported shrimp may reflect the possible use of antibiotics in raising shrimp in those countries.


Sign in / Sign up

Export Citation Format

Share Document