scholarly journals Antibiogram signatures of non-cholera causing Vibrio species recovered from environmental niches in Eastern Cape, South Africa.

Author(s):  
Oluwakemi Victoria Ayodele ◽  
Anthony Ifeanyi Okoh

Abstract Background: The use of antibiotics globally has helped reduce mortality and morbidity rate due to its ability to effectively treat bacterial infections in both humans and animals. However, the menace of antimicrobial resistance has become a challenge to public health due to its increased mortality and morbidity rate. This study determined the antibiogram pattern of non-cholera causing Vibrio species against a panel of 11 antibiotics that are wildly used for treatment. Multiple antibiotic resistance phenotype, multiple antibiotic resistant indices and minimum inhibitory concentration (MIC) of test antibiotics were also determined.Results: Polymerase chain reaction (PCR) was used to confirm 100 isolates of Vibrio parahaemolyticus, 82 and 46 isolates of Vibrio vulnificus and Vibrio fluvialis respectively, collected from the culture collections of the Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare. Thereafter, disc diffusion method was used to determine the antibiogram pattern of target non-cholera causing Vibrio species against a panel of 11 antibiotics that are of clinical importance. The highest rate of Vibrio parahaemolyticus resistance was observed against tetracycline (22 %) and nalidixic acid (16 %). Vibrio fluvialis also displayed highest rate of resistance against tetracycline (28 %) and nalidixic acid (28 %), while Vibrio vulnificus isolates exhibited highest rate resistance against imipenem (40 %) and tetracycline (22 %). A total of 38 MARP patterns were observed and the MAR indices ranged between 0.3 and 0.8. Against the resistant Vibrio parahaemolyticus and Vibrio fluvialis isolates, minimum inhibitory concentration ranged from 16 µg/ml to 2048 µg/ml for both tetracycline and nalidixic acid, while against Vibrio vulnificus isolates, minimum inhibitory concentration ranged from 8 µg/ml to 256 µg/ml for both imipenem and nalidixic acid. Conclusions: Results obtained from this study is an indication that antibiotic resistant bacteria that could pose as threat to health of humans and animals are present in the environment.

2021 ◽  
Vol 13 (2) ◽  
pp. 388-400
Author(s):  
Anu Maharjan ◽  
Binod Dhungel ◽  
Anup Bastola ◽  
Upendra Thapa Shrestha ◽  
Nabaraj Adhikari ◽  
...  

Introduction: Enteric fever, a systemic infection caused by Salmonella enterica Typhi and S. enterica Paratyphi is one of the most common infections in developing countries such as Nepal. Aside from irrational practices of antibiotic use, mutations in chromosomal genes encoding DNA gyrase and Topoisomerase IV and by plasmid mediated quinolone resistant (PMQR) genes are suggested mechanisms for the development of resistance to nalidixic acid and reduced susceptibility to ciprofloxacin. Regardless of high endemicity of enteric fever in Nepal, there is paucity of studies on prevalence and drug-resistance of the pathogen. Therefore, this study aimed to assess the antibiotic susceptibility pattern of Salmonella isolates and determine the minimum inhibitory concentration of ciprofloxacin. Methods: A total of 1298 blood samples were obtained from patients with suspected enteric fever, attending Sukraraj Tropical and Infectious Disease Hospital (STIDH) during March–August, 2019. Blood samples were inoculated immediately into BACTEC culture bottles and further processed for isolation and identification of Salmonella Typhi and S. Paratyphi. Axenic cultures of the isolates were further subjected to antimicrobial susceptibility testing (AST) by using the modified Kirby–Bauer disc diffusion method based on the guidelines by CLSI. The minimum inhibitory concentration (MIC) of ciprofloxacin was determined by agar-dilution method. Results: Out of 1298 blood cultures, 40 (3.1%) were positive for Salmonella spp. among which 29 (72.5%) isolates were S. Typhi and 11 (27.5%) isolates were S. Paratyphi A. In AST, 12.5% (5/40), 15% (6/40) and 20% (8/40) of the Salmonella isolates were susceptible to nalidixic acid, ofloxacin and levofloxacin, respectively, whereas none of the isolates were susceptible to ciprofloxacin. The MIC value for ciprofloxacin ranged from 0.06-16 µg/mL in which, respectively, 5% (2/40) and 52.5% (21/40) of the isolates were susceptible and resistant to ciprofloxacin. None of the isolates showed multidrug-resistance (MDR) in this study. Conclusion: This study showed high prevalence of quinolone-resistant Salmonella spp., while there was marked re-emergence of susceptibilities to traditional first option drugs. Hence, conventional first-line-drugs and third-generation cephalosporins may find potential usage as the empirical drugs for enteric fever. Although our reporting was free of MDR strains, extensive surveillance, augmentation of diagnostic facilities and treatment protocol aided by AST report are recommended for addressing the escalating drug-resistance in the country.


2021 ◽  
Vol 50 (2) ◽  
pp. 219-226
Author(s):  
Abdul Haq ◽  
Alam Khan ◽  
Zulfiqar Ali Malik ◽  
Mushtaq Ahmed ◽  
Samiullah Khan ◽  
...  

Antimicrobial activities of deoiled seed kernel (mechanically pressed), fruit coat and seed coat of Jatropha curcas Linn. collected from two regions (Bannu and Peshawar) of Pakistan were investigated. The antimicrobial activities were carried out against Klebsiella pneumoniae (ATCC 43816), Escherichia coli (ATCC 10536), Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and two clinical fungal isolates Aspergillus fumigatus and Candida albicans using agar well diffusion method. The antibacterial activities of Peshawar sample were found to be higher than Bannu, against selected strains. While antifungal activities of both samples were similar. Highest zone of inhibition 31.5 ± 0.7 mm was exhibited by n-hexane extract of deoiled seed kernel of Peshawar sample against Bacillus subtilis (ATCC 6633). The minimum inhibitory concentration of ethanolic extracts of deoiled seed kernel and seed coat of Peshawar sample was 31.25 - 25 mg/ml. Whereas, minimum inhibitory concentration of ethanolic and n-hexane extracts of Bannu sample was 62.5 - 125 mg/ml. The results suggested that antimicrobial potential of J. curcas Linn. varied with geographical distribution. The investigation of different varieties of medicinal plants belonging to the same species will greatly enhance the chances of best pharmaceuticals discovery. Bangladesh J. Bot. 50(2): 219-226, 2021 (June)


Author(s):  
Surachai Techaoei ◽  
Pattaranut Eakwaropas ◽  
Khemjira Jarmkom ◽  
Warachate Khobjai

Objective: The objective of this study was to investigate the antimicrobial activity of Phellinus linteus against skin infectious pathogens, Staphylococcus epidermidis ATCC12228 and Propionibacterium acnes DMST 14916.Methods: Fungal fruiting bodies were extracted with 95% ethanol and ethyl acetate, and then, vaporized. The antimicrobial activities were determined by the disc diffusion method against Propionibacterium acnes DMST 14916 and Staphylococcus epidermidis ATCC12228 skin infectious pathogens. A minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) for those crude extracts were determined. Finally, the chemical profile of crude extract was determined by using thin layer chromatography and GC-MS.Results: The result demonstrated that the ethanolic extraction had more active fractions with an MIC of 0.5 mg/ml against the growth of Propionibacterium acnes DMST 14916 and Staphylococcus epidermidis ATCC12228 and also showed a minimum inhibitory concentration (MBC) at a concentration of 1.0 mg/ml, while ethyl acetate-based solvents failed to develop on TLC according to Retention factor (Rf) values of 0.71-0.76. The GC-MS was applied to investigate the chemical profile of crude extract of Phellinus linteus, revealing a component of hexadecanoic acid and 9, 12-octadecadienoic acid.Conclusion: Phellinus linteus fruiting body extracts have great potential as antimicrobial compounds against Propionibacterium acnes DMST 14916 and Staphylococcus epidermidis ATCC12228. Thus, they can be used in the treatment of infectious diseases caused by bacterial pathogens. 


2022 ◽  
Vol 9 ◽  
Author(s):  
Jun Tang ◽  
Xueshuang Huang ◽  
Ming-Hang Cao ◽  
Zhiyan Wang ◽  
Zhiyin Yu ◽  
...  

During a screening for antifungal secondary metabolites, six new mono-/bis-alkenoic acid derivatives (2–7) and one known alkenoic acid derivative (1) were isolated from an endophytic fungi Scopulariopsis candelabrum. Their chemical structures were identified by 1H-NMR, 13C-NMR, 2D NMR, and high-resolution mass spectrometry, as well as comparisons with previously reported literatures. Among them, fusariumesters C‒F (2–5) are bis-alkenoic acid derivatives dimerized by an ester bond, while acetylfusaridioic acid A (6) and fusaridioic acid D (7) are alkenoic acid monomers. All the isolates were submitted to an antifungal assay against Candida albicans and the corn pathogen Exserohilum turcicum using the filter paper agar diffusion method. As a result, only compound 1 decorating with β-lactone ring turned out to be active against these two tested fungi. The broth microdilution assay against Candida albicans showed the minimum inhibitory concentration (MIC) value of 1 to be 20 μg/ml, while the minimum inhibitory concentration value of the positive control (naystatin) was 10 μg/ml. And the half maximal inhibitory concentration (IC50) value (21.23 μg/ml) of 1 against Exserohilum turcicum was determined by analyzing its inhibition effect on the mycelial growth, using cycloheximide (IC50 = 46.70 μg/ml) as the positive control.


2005 ◽  
Vol 68 (7) ◽  
pp. 1454-1456 ◽  
Author(s):  
YI-CHENG SU ◽  
JINGYUN DUAN ◽  
WEN-HSIN WU

The thiosulfate–citrate–bile salts–sucrose agar (TCBS) used in the most-probable-number method for detecting Vibrio parahaemolyticus cannot differentiate growth of V. parahaemolyticus from Vibrio vulnificus or Vibrio mimicus. This study examined the selectivity and specificity of Bio-Chrome Vibrio medium (BCVM), a chromogenic medium that detects V. parahaemolyticus on the basis of the formation of distinct purple colonies on the medium. A panel consisting of 221 strains of bacteria, including 179 Vibrio spp. and 42 non-Vibrio spp., were examined for their ability to grow and produce colored colonies on BCVM. Growth of Salmonella, Shigella, Escherichia coli, Enterobacter cloacae, Yersinia enterocolitica, and Aeromonas was inhibited by both BCVM and TCBS. All 148 strains of V. parahaemolyticus grew on BCVM, and 145 of them produced purple colonies. The remaining 31 Vibrio spp., except one strain of Vibrio fluvialis, were either unable to grow or produced blue-green or white colonies on BCVM. Bio-Chrome Vibrio medium was capable of differentiating V. parahaemolyticus from other species, including V. vulnificus and V. mimicus. Further studies are needed to evaluate the sensitivity and specificity of BCVM for detecting V. parahaemolyticus in foods.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Martin Muthee Gakuubi ◽  
Angeline W. Maina ◽  
John M. Wagacha

The objective of this study was to evaluate the antifungal activity of essential oil (EO) ofEucalyptus camaldulensisDehnh. against fiveFusariumspp. commonly associated with maize.The essential oil had been extracted by steam distillation in a modified Clevenger-type apparatus from leaves ofE. camaldulensisand their chemical composition characterized by gas chromatography mass spectrometry. Poisoned food technique was used to determine the percentage inhibition of mycelial growth, minimum inhibitory concentration, and minimum fungicidal concentration of the EO on the test pathogens. Antifungal activity of different concentrations of the EO was evaluated using disc diffusion method. The most abundant compounds identified in the EO were 1,8-cineole (16.2%),α-pinene (15.6%),α-phellandrene (10.0%), and p-cymene (8.1%). The EO produced complete mycelial growth inhibition in all the test pathogens at a concentration of 7-8 μL/mL after five days of incubation. The minimum inhibitory concentration and minimum fungicidal concentration of the EO on the test fungi were in the range of 7-8 μL/mL and 8–10 μL/mL, respectively. These findings confirm the fungicidal properties ofE. camaldulensisessential oils and their potential use in the management of economically importantFusariumspp. and as possible alternatives to synthetic fungicides.


2018 ◽  
Vol 20 (87) ◽  
pp. 65-69
Author(s):  
R.A. Peleno

The data of the influence of active substances of anthelmintic and antiprotozoal preparations on the growth of L. casei IMB B-7280 and E. coli 055K59 are provided in the article. Their minimal inhibitory concentrations were determined for these strains of microorganisms and the active substances with which possible simultaneous application of probiotic strain L. casei IMB В-7280 is established. With this aim, the effect on the growth of L. casei IMB B-7280 and E. coli 055K59 and the minimum inhibitory concentration of fenbendazole, levamisole and ivermectin, which are part of the anthelmintic preparations and amprolium, tylosin, sodium sulfadimexone and sodium sulfatyazole, which are active substances of antiprotozoal drugs, were investigated. The determination of the minimum inhibitory concentration of the active substances of antiparasitic agents against these strains of microorganisms was carried out in in vitro experiments by serial dilutions in a dense MRS environment and MPA, and a study of the effect on the growth by diffusion method, followed by measurement of growth retardation zones in millimeters. It is established that among active substances of anthelmintic preparations only phenbendazole caused growth retardation and only relative to L. casei IMB B-7280. Among the active substances of antiprotozoal drugs, sodium sulfatyazole was the most active, which inhibited growth as L. casei IMB-7280 and E. coli 055K59 № 3912/41. Thylosin was effective only in relation to L. casei IMB B-7280 and at the highest concentration of 0.03%, the growth retardation zone was 23.4 ± 0.92 mm. Sodium sulfadimetoxin caused the growth retardation of L. сasei IMB В-7280 only at the highest concentration. The minimum inhibitory concentration of active substances of anti-parasitic drugs was different for strains L. casei IMB B-7280 and E. coli 055K59 № 3912/4. The strongest inhibitory effect was shown by tylosin, which stopped the growth of L. casei IMB B-7280 and E. coli 055K59 № 3912/41 respectively at concentrations of 0.00125 and 50.0 mg/ml. Active substances such as amprolium, levamisole and ivermectin did not significantly inhibit the growth of L. casei, IMB B-7280 and E. coli 055K59 № 3912/41, since their minimal inhibitory concentration was in the range of 4000 to 6000 mg ml.


2019 ◽  
Vol 21 (2) ◽  
pp. 80-85
Author(s):  
Farshad Kakian ◽  
Behnam Zamzad ◽  
Abolfazl Gholipour ◽  
Kiarash Zamanzad

Background and aims: Klebsiella is an opportunistic organism that is the cause of severe diseases such as pneumonia, septicemia, and urinary tract infections (UTIs). In addition, high antibiotic resistance has challenged the treatment of this bacterium. However, carbapenem antibiotics are considered as the therapeutic agents for selecting the treatment of penicillin- and cephalosporin-resistant gram-negative bacterial infections. The present study aimed to determine the resistance and minimum inhibitory concentration (MIC) of meropenem and imipenem. Methods: A total of 80 Klebsiella spp isolated from UTIs were collected in various educational wards (i.e., urology, obstetrics, and gynecology, as well as the units of infectious diseases, internal medicine, and intensive care) in different hospitals of Shahrekord. The isolates were then identified by using biochemical tests. Further, disc diffusion method was employed to determine the antibiotic resistance. Furthermore, MIC was estimated by the Epsilon-test strip. Moreover, P=Q=0.50, an error of 0.05, and an accuracy of 0.11 were considered for determining the sample size (n=80). Results: Based on the results of disc diffusion method, 24 strains were resistant to meropenem and imipenem. Additionally, the MIC was 24 (30%) by the E-test. In addition, 24 isolates had a MIC of ≥4 μg/mL for meropenem and imipenem and thus were resistant while 18 isolates were found to have a MIC of 1≤ MIC<4 μg/mL and therefore, were considered semi-sensitive (P<0.001). Conclusion: In general, Klebsiella strains were found to be resistant to meropenem and imipenem. Therefore, rapid and accurate identification of these strains and the selection of appropriate antibiotics can help quickly eradicate the infections caused by these bacteria. Accordingly, a waste of time, the consumption of medication, or even an increased resistance are prevented.


Sign in / Sign up

Export Citation Format

Share Document