Differences in proteomic profiles of milk fat globule membrane in yak and cow milk

2017 ◽  
Vol 221 ◽  
pp. 1822-1827 ◽  
Author(s):  
Xiaoxi Ji ◽  
Xisheng Li ◽  
Ying Ma ◽  
Day Li
Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3486
Author(s):  
Sophie Gallier ◽  
Louise Tolenaars ◽  
Colin Prosser

Cow milk is the most common dairy milk and has been extensively researched for its functional, technological and nutritional properties for a wide range of products. One such product category is infant formula, which is the most suitable alternative to feed infants, when breastfeeding is not possible. Most infant formulas are based on cow milk protein ingredients. For several reasons, consumers now seek alternatives such as goat milk, which has increasingly been used to manufacture infant, follow-on and young child formulas over the last 30 years. While similar in many aspects, compositional and functional differences exist between cow and goat milk. This offers the opportunity to explore different formulations or manufacturing options for formulas based on goat milk. The use of whole goat milk as the only source of proteins in formulas allows levels of milk fat, short and medium chain fatty acids, sn-2 palmitic acid, and milk fat globule membrane (MFGM) to be maximised. These features improve the composition and microstructure of whole goat milk-based infant formula, providing similarities to the complex human milk fat globules, and have been shown to benefit digestion, and cognitive and immune development. Recent research indicates a role for milk fat and MFGM on digestive health, the gut–brain axis and the gut–skin axis. This review highlights the lipid composition of whole goat milk-based infant formula and its potential for infant nutrition to support healthy digestion, brain development and immunity. Further work is warranted on the role of these components in allergy development and the advantages of goat milk fat and MFGM for infant nutrition and health.


2010 ◽  
Vol 120 (2) ◽  
pp. 544-551 ◽  
Author(s):  
Olivia Ménard ◽  
Sarfraz Ahmad ◽  
Florence Rousseau ◽  
Valérie Briard-Bion ◽  
Frédéric Gaucheron ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mallory C. Honan ◽  
Megan J. Fahey ◽  
Amanda J. Fischer-Tlustos ◽  
Michael A. Steele ◽  
Sabrina L. Greenwood

Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 202-217
Author(s):  
Michele Manoni ◽  
Donata Cattaneo ◽  
Sharon Mazzoleni ◽  
Carlotta Giromini ◽  
Antonella Baldi ◽  
...  

Milk lipids are composed of milk fat globules (MFGs) surrounded by the milk fat globule membrane (MFGM). MFGM protects MFGs from coalescence and enzymatic degradation. The milk lipid fraction is a “natural solvent” for macronutrients such as phospholipids, proteins and cholesterol, and micronutrients such as minerals and vitamins. The research focused largely on the polar lipids of MFGM, given their wide bioactive properties. In this review we discussed (i) the composition of MFGM proteome and its variations among species and phases of lactation and (ii) the micronutrient content of human and cow’s milk lipid fraction. The major MFGM proteins are shared among species, but the molecular function and protein expression of MFGM proteins vary among species and phases of lactation. The main minerals in the milk lipid fraction are iron, zinc, copper and calcium, whereas the major vitamins are vitamin A, β-carotene, riboflavin and α-tocopherol. The update and the combination of this knowledge could lead to the exploitation of the MFGM proteome and the milk lipid fraction at nutritional, biological or technological levels. An example is the design of innovative and value-added products, such as MFGM-supplemented infant formulas.


2021 ◽  
pp. 106378
Author(s):  
Iolly Tábata Oliveira Marques ◽  
Fábio Roger Vasconcelos ◽  
Juliana Paula Martins Alves ◽  
Assis Rubens Montenegro ◽  
César Carneiro Linhares Fernandes ◽  
...  

1994 ◽  
Vol 1199 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Naohito Aoki ◽  
Hidenori Kuroda ◽  
Miho Urabe ◽  
Yoshimi Taniguchi ◽  
Takahiro Adachi ◽  
...  

2002 ◽  
Vol 69 (4) ◽  
pp. 555-567 ◽  
Author(s):  
SUNG JE LEE ◽  
JOHN W. SHERBON

The effects of heat treatment and homogenization of whole milk on chemical changes in the milk fat globule membrane (MFGM) were investigated. Heating at 80 °C for 3–18 min caused an incorporation of whey proteins, especially β-lactoglobulin (β-lg), into MFGM, thus increasing the protein content of the membrane and decreasing the lipid. SDS-PAGE showed that membrane glycoproteins, such as PAS-6 and PAS-7, had disappeared or were weakly stained in the gel due to heating of the milk. Heating also decreased free sulphydryl (SH) groups in the MFGM and increased disulphide (SS) groups, suggesting that incorporation of β-lg might be due to association with membrane proteins via disulphide bonds. In contrast, homogenization caused an adsorption of caseins to the MFGM but no binding of whey proteins to the MFGM without heating. Binding of caseins and whey proteins and loss of membrane proteins were not significantly different between milk samples that were homogenized before and after heating. Viscosity of whole milk was increased when milk was treated with both homogenization and heating.


DNA Sequence ◽  
2004 ◽  
Vol 15 (5-6) ◽  
pp. 326-331 ◽  
Author(s):  
T.K. Bhattacharya ◽  
S.S. Misra ◽  
Feroz D. Sheikh ◽  
S. Dayal ◽  
V. Vohra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document