Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor

2019 ◽  
Vol 274 ◽  
pp. 8-15 ◽  
Author(s):  
Yao Yao ◽  
Hao Wu ◽  
Jianfeng Ping
2018 ◽  
Vol 777 ◽  
pp. 597-601 ◽  
Author(s):  
Jeerakit Thangphatthanarungruang ◽  
Aroonsri Ngamaroonchote ◽  
Rawiwan Laocharoensuk ◽  
Chuleekorn Chotsuwan ◽  
Weena Siangproh

In this work, a novel electrochemical sensor was proposed for the simultaneous determination of fat-soluble vitamins (A, D, E, K) using a screen-printed graphene/Nafion electrode (SPGNE). The scanning electron microscopy was used for morphological characterization of the electrode surface. The electrochemical behaviors of fat-soluble vitamins have been studied in a mixture of ethanol and sodium perchlorate monohydrate using square-wave voltammetry (SWV). The results obtained indicated that the oxidation peak of each fat-soluble vitamin appeared at different potentials leading to the possibility for the simultaneous detection. The influences of experimental parameters such as the effects of proportions of ethanol, potential increment, amplitude, frequency and quiet time were examined. Under the optimized conditions, the linearity between oxidative currents and concentrations of fat-soluble vitamins ranged from 0.1 μg mL-1 to 5 μg mL-1 for vitamin A, 0.08 μg mL-1 to 5 μg mL-1 for vitamin D and E, and 0.2 μg mL-1 to 1.6 μg mL-1 for total vitamin K, with the limits of detection of 0.018, 0.013, 0.012 and 0.004 μg mL-1, respectively. These developed sensors provide high sensitivity in detection and offer high potential to apply them for the simultaneous determination of fat-soluble vitamins in dietary supplements.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 517
Author(s):  
Siyamthanda Hope Mnyipika ◽  
Tshimangadzo Saddam Munonde ◽  
Philiswa Nosizo Nomngongo

The rapid detection of trace metals is one of the most important aspect in achieving environmental monitoring and protection. Electrochemical sensors remain a key solution for rapid detection of heavy metals in environmental water matrices. This paper reports the fabrication of an electrochemical sensor obtained by the simultaneous electrodeposition of MnO2 nanoparticles and RGO nanosheets on the surface of a glassy carbon electrode. The successful electrodeposition was confirmed by the enhanced current response on the cyclic voltammograms. The XRD, HR-SEM/EDX, TEM, FTIR, and BET characterization confirmed the successful synthesis of MnO2 nanoparticles, RGO nanosheets, and MnO2@RGO nanocomposite. The electrochemical studies results revealed that MnO2@RGO@GCE nanocomposite considerably improved the current response on the detection of Zn(II), Cd(II) and Cu(II) ions in surface water. These remarkable improvements were due to the interaction between MnO2 nanomaterials and RGO nanosheets. Moreover, the modified sensor electrode portrayed high sensitivity, reproducibility, and stability on the simultaneous determination of Zn(II), Cd(II), and Cu(II) ions. The detection limits of (S/N = 3) ranged from 0.002–0.015 μg L−1 for the simultaneous detection of Zn(II), Cd(II), and Cu(II) ions. The results show that MnO2@RGO nanocomposite can be successfully used for the early detection of heavy metals with higher sensitivity in water sample analysis.


Sign in / Sign up

Export Citation Format

Share Document