scholarly journals Selective voltammetric detection of chlorophylls using a semi-circular potential wave

2020 ◽  
Vol 323 ◽  
pp. 126844
Author(s):  
Yuanzhe Wang ◽  
Lifu Chen ◽  
Richard G. Compton
2019 ◽  
Vol 15 (5) ◽  
pp. 567-574
Author(s):  
Huck Jun Hong ◽  
Suw Young Ly

Background: Tetrodotoxin (TTX) is a biosynthesized neurotoxin that exhibits powerful anticancer and analgesic abilities by inhibiting voltage-gated sodium channels that are crucial for cancer metastasis and pain delivery. However, for the toxin’s future medical applications to come true, accurate, inexpensive, and real-time in vivo detection of TTX remains as a fundamental step. Methods: In this study, highly purified TTX extracted from organs of Takifugu rubripes was injected and detected in vivo of mouse organs (liver, heart, and intestines) using Cyclic Voltammetry (CV) and Square Wave Anodic Stripping Voltammetry (SWASV) for the first time. In vivo detection of TTX was performed with auxiliary, reference, and working herring sperm DNA-immobilized carbon nanotube sensor systems. Results: DNA-immobilization and optimization of amplitude (V), stripping time (sec), increment (mV), and frequency (Hz) parameters for utilized sensors amplified detected peak currents, while highly sensitive in vivo detection limits, 3.43 µg L-1 for CV and 1.21 µg L-1 for SWASV, were attained. Developed sensors herein were confirmed to be more sensitive and selective than conventional graphite rodelectrodes modified likewise. A linear relationship was observed between injected TTX concentration and anodic spike peak height. Microscopic examination displayed coagulation and abnormalities in mouse organs, confirming the powerful neurotoxicity of extracted TTX. Conclusion: These results established the diagnostic measures for TTX detection regarding in vivo application of neurotoxin-deviated anticancer agents and analgesics, as well as TTX from food poisoning and environmental contamination.


2016 ◽  
Vol 80 ◽  
pp. 47-53 ◽  
Author(s):  
Nekane Reta ◽  
Andrew Michelmore ◽  
Christopher Saint ◽  
Beatriz Prieto-Simón ◽  
Nicolas H. Voelcker

2015 ◽  
Vol 17 (39) ◽  
pp. 26394-26402 ◽  
Author(s):  
Sharel P. E ◽  
Thomas S. Miller ◽  
Julie V. Macpherson ◽  
Patrick R. Unwin

Acid functionalised SWNT network electrodes enhance the voltammetric detection of dopamine and minimise surface fouling.


2021 ◽  
Vol 21 (12) ◽  
pp. 5795-5811
Author(s):  
Milan Z. Momčilović ◽  
Jelena S. Milićević ◽  
Marjan S. Ranđelović

Widespread usage of pesticides in agricultural practice caused their residues to appear in water and food products intended for human consumption. The potential toxicity of these resources has raised awareness about pesticide tracking in the environment. Development of reliable electrochemical sensors for the on-site determination of pesticide concentrations is envisioned as an alternative to conventional chromatographic methods which are robust, expensive and require skilled work force. Modification of the working electrode surface can result in enhanced electrochemical response towards selected pesticide making such electrode convenient sensor for facile and efficient determination of pesticides in low concentrations. New generation of nanomaterials is applied in electrode modification in order to improve its sensitivity and selectivity. The present review summarizes significant advances in voltammetric detection of pesticides for the period of the past five years. The major focus of this review is set to the types of carbon and oxide based materials, metal nanoparticles, composites and other materials employed to upgrade standard electrode configurations such as glassy carbon and carbon paste electrodes, boron doped diamond electrodes, screen printed and film electrodes, metal and amalgam, and other kinds of electrodes.


Sign in / Sign up

Export Citation Format

Share Document