Antioxidant mechanism of a newly found phenolic compound from adlay (NDPS) in HepG2 cells via Nrf2 signalling

2022 ◽  
pp. 132034
Author(s):  
Wenfei Xiong ◽  
Ya Li ◽  
Yijun Yao ◽  
Qian Xu ◽  
Lifeng Wang
Fermentation ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 34
Author(s):  
Ji Yeon Lee ◽  
Hye Min Park ◽  
Chang-Ho Kang

In this study, the antioxidant mechanism of Astragalus membranaceus fermented by Lactiplantibacillusplantarum MG5276 (MG5276F-AM) was evaluated in HepG2 cells and in an animal model. HPLC analysis was performed to confirm the bioconversion of the bioactive compounds in A. membranaceus by fermentation. Calycosin and formononetin, which were not detected before fermentation (NF-AM), were detected after fermentation (MG5276F-AM), and its glycoside was not observed in MG5276F-AM. In HepG2 cells, MG5276F-AM alleviated H2O2-induced oxidative stress by mediating lipid peroxidation and glutathione levels, and upregulated antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx). In the tBHP-injected mouse model, administration of MG5276F-AM reduced hepatic aspartate transaminase, alanine transaminase, and lipid peroxidation. MG5276F-AM also modulated antioxidant enzymes as well as HepG2 cells. Thus, fermentation of A. membranaceus with L. plantarum MG5276 elevated the isoflavonoid aglycone by hydrolysis of its glycosides, and this bioconversion enhanced antioxidant activity both in vitro and in vivo.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
J Usta ◽  
K Racha ◽  
K Boushra ◽  
S Shatha ◽  
B Yolla ◽  
...  

2012 ◽  
Vol 33 (S 01) ◽  
Author(s):  
K Becker ◽  
A Klein ◽  
OA Wrulich ◽  
P Gruber ◽  
D Fuchs ◽  
...  

2014 ◽  
Vol 52 (01) ◽  
Author(s):  
M Neß ◽  
SK Meurer ◽  
E Borkham-Kamphorst ◽  
R Weiskirchen

1992 ◽  
Vol 68 (01) ◽  
pp. 040-047 ◽  
Author(s):  
C Scott Jamison ◽  
Bryan F Burkey ◽  
Sandra J Friezner Degen

SummaryCultures of human hepatoblastoma (HepG2) cells were treated with vitamin K1 or warfarin and prothrombin antigen and mRNA levels were determined. With 3 and 6 h of 10 µg vitamin K1 treatment secreted prothrombin antigen levels, relative to total secreted protein levels, were increased 1.5-fold and 2.1-fold, respectively, over ethanol-treated control levels as determined by an enzyme-linked immunosorbent assay. Dose-response analysis with 3 h of 25 µg/ml vitamin K1 treatment demonstrated a maximal increase of 2.0-fold in secreted prothrombin antigen levels, relative to total secreted protein levels, over ethanol-treated control levels. Pulse-chase analysis with 35S-methionine and immunoprecipitation of 35S-labelled prothrombin demonstrated that, with vitamin K1 treatment (25 µg/ml, 3 h), the rate of prothrombin secretion increased approximately 2-fold and the total amount (intra- and extracellular) of prothrombin synthesized increased approximately 50% over ethanol-treated control levels. Warfarin treatment (1, 5, or 10 µg/ml, 24 h) resulted in decreases in secreted prothrombin antigen levels, relative to total protein levels to approximately 85%, 87% or 81% of ethanol-treated control levels. Analysis of total RNA isolated from these cultures by Northern and solution hybridization techniques demonstrated that prothrombin mRNA was approximately 2.1 kb and that neither vitamin K1 nor warfarin treatment affected the quantity of prothrombin mRNA (ranging from 240–350 prothrombin mRNA molecules per cell). These results demonstrate that vitamin K1 and warfarin, in addition to effects on γ-carboxylation, affect prothrombin synthesis post-transcriptionally, perhaps influencing translation, post-translational processing and/or secretion mechanisms.


2019 ◽  
Author(s):  
C Niemietz ◽  
S Guttmann ◽  
V Sandfort ◽  
H Schmidt
Keyword(s):  

2020 ◽  
Author(s):  
J Schäfer ◽  
H Janssen ◽  
A Bicker ◽  
P Galle ◽  
D Strand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document