Evaluation of Lactococcus lactis subsp. lactis as protective culture for active packaging of non-fermented foods: Creamy mushroom soup and sliced cooked ham

Food Control ◽  
2021 ◽  
Vol 122 ◽  
pp. 107802
Author(s):  
Laura Settier-Ramírez ◽  
Gracia López-Carballo ◽  
Rafael Gavara ◽  
Pilar Hernández-Muñoz
2008 ◽  
Vol 71 (10) ◽  
pp. 2024-2029 ◽  
Author(s):  
PONGSAK RATTANACHAIKUNSOPON ◽  
PARICHAT PHUMKHACHORN

Lactic acid bacteria isolated from various Thai fermented foods were screened for the presence of nisin gene by using PCR with primers specific to nisin A structural gene. Only one strain, Lactococcus lactis subsp. lactis TFF 221, isolated from kung jom, a traditional shrimp paste, was found to carry a nisin gene. The TFF 221 nisin had antimicrobial activity against not only closely related lactic acid bacteria but also some foodborne pathogens. It was heat stable and inactivated by α-chymotrypsin and proteinase K. Some characteristics of TFF 221 nisin were found to be very similar to those of nisin A produced by Lactococcus lactis subsp. lactis NCDO 2111. Both of them had the same antimicrobial spectrum and MICs against all indicator bacteria. However, when assayed with indicator organisms, in all cases the TFF 221 nisin produced larger zones of inhibition in agar diffusion assays than the nisin A did. Sequencing of the TFF 221 nisin gene showed that it was the natural nisin variant, nisin Z, as indicated by the substitution of asparagine residue instead of histidine at position 27. The nisin determinant in strain TFF 221 was found to be located on a conjugative transposon residing in the chromosome. The ability of the nisin produced by L. lactis subsp. lactis TFF 221 to inhibit a wide range of foodborne pathogens may be useful in improving the food safety of the fermented product, especially in the Thai environment, which suffers from perennial problems of poor food hygiene.


2017 ◽  
Vol 80 (12) ◽  
pp. 2137-2146 ◽  
Author(s):  
Dimitrios Noutsopoulos ◽  
Athanasia Kakouri ◽  
Eleftheria Kartezini ◽  
Dimitrios Pappas ◽  
Efstathios Hatziloukas ◽  
...  

ABSTRACT This study evaluated in situ expression of the nisA gene by an indigenous, nisin A–producing (NisA+) Lactococcus lactis subsp. cremoris raw milk genotype, represented by strain M78, in traditional Greek Graviera cheeses under real factory-scale manufacturing and ripening conditions. Cheeses were produced with added a mixed thermophilic and mesophilic commercial starter culture (CSC) or with the CSC plus strain M78 (CSC+M78). Cheeses were sampled after curd cooking (day 0), fermentation of the unsalted molds for 24 h (day 1), brining (day 7), and ripening of the brined molds (14 to 15 kg each) for 30 days in a fully controlled industrial room (16.5°C; 91% relative humidity; day 37). Total RNA was directly extracted from the cheese samples, and the expression of nisA gene was evaluated by real-time reverse transcription PCR (qRT-PCR). Agar overlay and well diffusion bioassays were correspondingly used for in situ detection of the M78 NisA+ colonies in the cheese agar plates and antilisterial activity in whole-cheese slurry samples, respectively. Agar overlay assays showed good growth (>8 log CFU/g of cheese) of the NisA+ strain M78 in coculture with the CSC and vice versa. The nisA expression was detected in CSC+M78 cheese samples only, with its expression levels being the highest (16-fold increase compared with those of the control gene) on day 1, followed by significant reduction on day 7 and almost negligible expression on day 37. Based on the results, certain intrinsic and mainly implicit hurdle factors appeared to reduce growth prevalence rates and decrease nisA gene expression, as well as the nisin A–mediated antilisterial activities of the NisA+ strain M78 postfermentation. To our knowledge, this is the first report on quantitative expression of the nisA gene in a Greek cooked hard cheese during commercial manufacturing and ripening conditions by using a novel, rarely isolated, indigenous NisA+ L. lactis subsp. cremoris genotype as costarter culture.


1992 ◽  
Vol 37 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Fred A. Exterkate ◽  
Marian de Jong ◽  
Gerrie J. C. M. de Veer ◽  
Ronald Baankreis

2004 ◽  
Vol 70 (10) ◽  
pp. 5769-5777 ◽  
Author(s):  
Catherine Burgess ◽  
Mary O'Connell-Motherway ◽  
Wilbert Sybesma ◽  
Jeroen Hugenholtz ◽  
Douwe van Sinderen

ABSTRACT This study describes the genetic analysis of the riboflavin (vitamin B2) biosynthetic (rib) operon in the lactic acid bacterium Lactococcus lactis subsp. cremoris strain NZ9000. Functional analysis of the genes of the L. lactis rib operon was performed by using complementation studies, as well as by deletion analysis. In addition, gene-specific genetic engineering was used to examine which genes of the rib operon need to be overexpressed in order to effect riboflavin overproduction. Transcriptional regulation of the L. lactis riboflavin biosynthetic process was investigated by using Northern hybridization and primer extension, as well as the analysis of roseoflavin-induced riboflavin-overproducing L. lactis isolates. The latter analysis revealed the presence of both nucleotide replacements and deletions in the regulatory region of the rib operon. The results presented here are an important step toward the development of fermented foods containing increased levels of riboflavin, produced in situ, thus negating the need for vitamin fortification.


2009 ◽  
Vol 9 (12) ◽  
pp. 1444-1451 ◽  
Author(s):  
Yosuke Nishitani ◽  
Takeshi Tanoue ◽  
Katsushige Yamada ◽  
Tsukasa Ishida ◽  
Masaru Yoshida ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Asad Abbaspour Anbi ◽  
Vadood Razavilar ◽  
Moslem Neyriz Naghadehi ◽  
Masoud Seidgar ◽  
Ali Nekuiefard ◽  
...  

Lactic Acid Bacteria (LAB) have a great potential as bio-preservatives. The live cells and supernatant Lactococcus lactis subsp. lactis induced bacteriological changes in Onchorhynchus mykiss fillet by spray and immersion methods was studied during vacuum- packaged storage at 4 °C for 15 days. 40 kg of O. mykiss were prepared from a culture farm in Oshnavieh (Northwest Iran) and 112 fillet samples (100g) were prepared by aseptic method. L. lactis subsp. lactis (PTCC1336) bacteria was cultured in MRS culture medium. Its supernatant (2%, 4%) was extracted and 106 CFUml-1 dilutions of LAB were prepared and tested on the fillets to enhance their shelf life. All samples were evaluated regarding to growth of psychrotrophic, psychrophilic, mesophilic bacteria, molds and yeasts. Four characteristics including of odor, flavor, texture and color of fillets after and before cooking were evaluated for sensory analysis on days 1, 5, 10 and 15 and compared with control samples. The 4% supernatant and live bacteria were more effective than that of 2% and control (P<0.05). The amounts of corrosive bacteria in 4% and live cells in storage time were less than human consumption limits (7log CFUg-1), whereas in control and 2% supernatant treatments were more than that limits. The results showed that increasing the percentage of supernatant was more effective on bacteriologic factors and enhanced sensory characteristics of rainbow trout fillets (P<0.05).


2018 ◽  
Vol 51 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Valéria Quintana Cavicchioli ◽  
Otávio Valério de Carvalho ◽  
Janine Cerqueira de Paiva ◽  
Svetoslav Dimitrov Todorov ◽  
Abelardo Silva Júnior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document