Phenyllactic Acid: A Green Compound for Food Biopreservation

Food Control ◽  
2021 ◽  
pp. 108184
Author(s):  
R.V. Rajanikar ◽  
Basavaprabhu Haranahalli Nataraj ◽  
Harshita Naithani ◽  
Syed Azmal Ali ◽  
Narender Raju Panjagari ◽  
...  
Keyword(s):  
Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2277
Author(s):  
Piotr M. Kuś ◽  
Igor Jerković

Recently, we proposed a new sample preparation method involving reduced solvent and sample usage, based on dehydration homogeneous liquid–liquid extraction (DHLLE) for the screening of volatiles and semi-volatiles from honey. In the present research, the method was applied to a wide range of honeys (21 different representative unifloral samples) to determine its suitability for detecting characteristic honey compounds from different chemical classes. GC-FID/MS disclosed 130 compounds from different structural and chemical groups. The DHLLE method allowed the extraction and identification of a wide range of previously reported specific and nonspecific marker compounds belonging to different chemical groups (including monoterpenes, norisoprenoids, benzene derivatives, or nitrogen compounds). For example, DHLLE allowed the detection of cornflower honey chemical markers: 3-oxo-retro-α-ionols, 3,4-dihydro-3-oxoedulan, phenyllactic acid; coffee honey markers: theobromine and caffeine; linden honey markers: 4-isopropenylcyclohexa-1,3-diene-1-carboxylic acid and 4-(2-hydroxy-2-propanyl)cyclohexa-1,3-diene-1-carboxylic acid, as well as furan derivatives from buckwheat honey. The obtained results were comparable with the previously reported data on markers of various honey varieties. Considering the application of much lower volumes of very common reagents, DHLLE may provide economical and ecological advantages as an alternative sample preparation method for routine purposes.


1959 ◽  
Vol 37 (1) ◽  
pp. 537-547 ◽  
Author(s):  
D. R. McCalla ◽  
A. C. Neish

p-Coumaric, caffeic, ferulic, and sinapic acids were found to occur in Salvia splendens Sello in alkali-labile compounds of unknown constitution. A number of C14-labelled compounds were administered to leafy cuttings of salvia and these phenolic acids were isolated after a metabolic period of several hours and their specific activities measured. Cinnamic acid, dihydrocinnamic acid, L-phenylalanine, and (−)-phenyllactic acid were found to be good precursors of the phenolic acids. D-Phenylalanine, L-tyrosine, and (+)-phenyllactic acid were poor precursors. A kinetic study of the formation of the phenolic acids from L-phenylalanine-C14 gave data consistent with the view that p-coumaric acid → caffeic acid → ferulic acid → sinapic acid, and that these compounds can act as intermediates in lignification. Feeding of C14-labelled members of this series showed that salvia could convert any one to a more complex member of the series but not so readily to a simpler member. Caffeic acid-β-C14 was obtained from salvia after the feeding of L-phenylalanine-β-C14 or cinnamic acid-β-C14, and caffeic acid labelled only in the ring was obtained after feeding generally labelled shikimic acid.


2010 ◽  
Vol 150 ◽  
pp. 320-320 ◽  
Author(s):  
Noelia Rodríguez ◽  
Jose Manuel Salgado ◽  
Belén Max ◽  
Sandra Cortés ◽  
Jose Manuel Domínguez

1975 ◽  
Vol 53 (7) ◽  
pp. 747-757 ◽  
Author(s):  
Graham J. Moore ◽  
N. Leo Benoiton

The initial rates of hydrolysis of Bz-Gly-Lys and Bz-Gly-Phe by carboxypeptidase B (CPB) are increased in the presence of the modifiers β-phenylpropionic acid, cyclohexanol, Bz-Gly, and Bz-Gly-Gly. The hydrolysis of the tripeptide Bz-Gly-Gly-Phe is also activated by Bz-Gly and Bz-Gly-Gly, but none of these modifiers activate the hydrolysis of Bz-Gly-Gly-Lys, Z-Leu-Ala-Phe, or Bz-Gly-phenyllactic acid by CPB. All modifiers except cyclohexanol display inhibitory modes of binding when present in high concentration.Examination of Lineweaver–Burk plots in the presence of fixed concentrations of Bz-Gly has shown that activation of the hydrolysis of neutral and basic peptides by CPB, as reflected in the values of the extrapolated parameters, Km(app) and keat, occurs by different mechanisms. For Bz-Gly-Gly-Phe, activation occurs because the enzyme–modifier complex has a higher affinity than the free enzyme for the substrate, whereas activation of the hydrolysis of Bz-Gly-Lys derives from an increase in the rate of breakdown of the enzyme–substrate complex to give products.Cyclohexanol differs from Bz-Gly and Bz-Gly-Gly in that it displays no inhibitory mode of binding with any of the substrates examined, activates only the hydrolysis of dipeptides by CPB, and has a greater effect on the hydrolysis of the basic dipeptide than on the neutral dipeptide. Moreover, when Bz-Gly-Lys is the substrate, cyclohexanol activates its hydrolysis by CPB by increasing both the enzyme–substrate binding affinity and the rate of the catalytic step, an effect different from that observed when Bz-Gly is the modifier.The anomalous kinetic behavior of CPB is remarkably similar to that of carboxypeptidase A, and is a good indication that both enzymes have very similar structures in and around their respective active sites. A binding site for activator molecules down the cleft of the active site is proposed for CPB to explain the observed kinetic behavior.


1998 ◽  
Vol 61 (10) ◽  
pp. 1281-1285 ◽  
Author(s):  
VIRGINIE DIEULEVEUX ◽  
MICHELINE GUÉGUEN

d-3-Phenyllactic acid is a compound with anti-Listeria activity which is produced and secreted by the yeastlike fungus, Geotrichum candidum. This compound has a bactericidal effect independent of the physiological State of Listeria monocytogenes when added at a concentration of 7 mg/ml to tryptic soy broth supplemented with yeast extract (TSB-YE). An initial L. monocytogenes population of 105 CFU/ml was reduced 100-fold (2 log) after 4 days of culture at 25 °C in TSB-YE containing d-3-phenyllactic acid. The Listeria population was reduced 1,000-fold (3 log) when the compound was added during the exponential growth phase, and was reduced to less than 10 CFU/ml when it was added during the stationary phase. d-3-Phenyllactic acid had a bacteriostatic effect in UHT whole milk, reducing the population by 4.5 log, to give fewer cells than in the control after 5 days of culture. The results obtained with L. monocytogenes at concentrations of 105 and 103 CFU/ml in cheese curds were less conclusive. d-3-Phenyllactic acid was 10 times less active than nisin in our experimental conditions (TSB-YE at 25°C).


3 Biotech ◽  
2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Xi Luo ◽  
Yingying Zhang ◽  
Fengwei Yin ◽  
Gaowei Hu ◽  
Qiang Jia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document