Antimicrobial resistance genes and class 1 integrons in MDR Salmonella strains isolated from swine lymph nodes

Food Control ◽  
2021 ◽  
Vol 128 ◽  
pp. 108190
Author(s):  
Fábio Sossai Possebon ◽  
Marcus Vinicius Niz Alvarez ◽  
Leila Sabrina Ullmann ◽  
João Pessoa Araújo Jr
2012 ◽  
Vol 160 (3-4) ◽  
pp. 403-412 ◽  
Author(s):  
Christina Susanne Hölzel ◽  
Katrin Susanne Harms ◽  
Johann Bauer ◽  
Ilse Bauer-Unkauf ◽  
Stefan Hörmansdorfer ◽  
...  

2017 ◽  
Author(s):  
Cameron J. Reid ◽  
Ethan R. Wyrsch ◽  
Piklu Roy Chowdhury ◽  
Tiziana Zingali ◽  
Michael Liu ◽  
...  

AbstractPorcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial resistance and virulence-associated genes (VAGs) and the zoonotic potential of commensalEscherichia colifrom swine is largely unknown. Furthermore, little is known about the role of commensalE. colias contributors to the mobilisation of antimicrobial resistance genes between food animals and the environment. Here, we report whole genome sequence analysis of 141E. colifrom the faeces of healthy pigs. Most strains belonged to phylogroups A and B1 and carried i) a class 1 integron; ii) VAGs linked with extraintestinal infection in humans; iii) antimicrobial resistance genesblaTEM, aphAl, cmlA, strAB, tet(A)A,dfrA12, dfrA5, sul1, sul2, sul3; iv)IS26;and v) heavy metal resistance genes (merA, cusA, terA). Carriage of the sulphonamide resistance genesul3was notable in this study. The 141 strains belonged to 42 multilocus sequence types, but clonal complex 10 featured prominently. Structurally diverse class 1 integrons that were frequently associated with IS26 carried unique genetic features that were also identified in extraintestinal pathogenicE. coli(ExPEC) from humans. This study provides the first detailed genomic analysis and point of reference for commensalE. coliof porcine origin, facilitating tracking of specific lineages and the mobile resistance genes they carry.Conflict of Interest StatementNone to declare.


2018 ◽  
Vol 24 (8) ◽  
pp. 1217-1225 ◽  
Author(s):  
Sabrina Hossain ◽  
Benthotage Chamara Jayasankha De Silva ◽  
Sudu Hakuruge Madusha Pramud Wimalasena ◽  
Hansani Nilupama Kumari Senarath Pathirana ◽  
Pasan Sepala Dahanayake ◽  
...  

Author(s):  
Olivia Ginn ◽  
David Berendes ◽  
Anna Wood ◽  
Aaron Bivins ◽  
Lucas Rocha-Melogno ◽  
...  

Understanding the movement of antimicrobial resistance genes (ARGs) in the environment is critical to managing their spread. To assess potential ARG transport through the air via urban bioaerosols in cities with poor sanitation, we quantified ARGs and a mobile integron (MI) in ambient air over periods spanning rainy and dry seasons in Kanpur, India (n = 53), where open wastewater canals (OCWs) are prevalent. Gene targets represented major antibiotic groups—tetracyclines (tetA), fluoroquinolines (qnrB), and beta-lactams (blaTEM)—and a class 1 mobile integron (intI1). Over half of air samples located near, and up to 1 km from OCWs with fecal contamination (n = 45) in Kanpur had detectable targets above the experimentally determined limits of detection (LOD): most commonly intI1 and tetA (56% and 51% of samples, respectively), followed by blaTEM (8.9%) and qnrB (0%). ARG and MI densities in these positive air samples ranged from 6.9 × 101 to 5.2 × 103 gene copies/m3 air. Most (7/8) control samples collected 1 km away from OCWs were negative for any targets. In comparing experimental samples with control samples, we found that intI1 and tetA densities in air are significantly higher (P = 0.04 and P = 0.01, respectively, alpha = 0.05) near laboratory-confirmed fecal contaminated waters than at the control site. These data suggest increased densities of ARGs and MIs in bioaerosols in urban environments with inadequate sanitation. In such settings, aerosols may play a role in the spread of AR.


2017 ◽  
Vol 80 (12) ◽  
pp. 2048-2055 ◽  
Author(s):  
Tao Yu ◽  
Xiaobing Jiang ◽  
Yu Liang ◽  
Yanping Zhu ◽  
Jinhe Tian ◽  
...  

ABSTRACT The aim of this study was to investigate antimicrobial resistance and the presence and transferability of corresponding resistance genes and integrons in bacteria isolated from cooked meat samples in the People's Republic of China. A total of 150 isolates (22 species belonging to 15 genera) were isolated from 49 samples. Resistance of these isolates to antimicrobials was commonly observed; 42.7, 36.0, and 25.3% of the isolates were resistant to tetracycline, streptomycin, and ampicillin, respectively. Multidrug resistance was observed in 41 (27.3%) of the isolates. Sixteen resistance genes, i.e., blaTEM-1 and blaCTX-M-14 (β-lactams), aac(3)-IIa (gentamicin), strA and strB (streptomycin), qnrB and qnrS (fluoroquinolone), sul1, sul2, and sul3 (sulfamethoxazole), cat1 and cat2 (chloramphenicol), and tetM, tetA, tetS, and tetB (tetracycline), were found in 54 isolates. One isolate of Pseudomonas putida carried qnrB, and sequence analysis of the PCR product revealed 96% identity to qnrB2. The qnr genes were found coresiding and were cotransferred with bla genes in two isolates. Twelve isolates were positive for the class 1 integrase gene, and four isolates carried the class 2 integrase gene. However, no class 3 integrase gene was detected. One isolate of Proteus mirabilis carried dfrA32-ereA-aadA2, and this unusual array could be transferred to Escherichia coli. Nonclassic class 1 integrons lacking qacEΔ1 and sul1 genes were found in 2 of the 12 intI1-positive isolates. Our results revealed the presence of multidrug-resistant bacteria in cooked meats and the presence and transferability of resistance genes in some isolates, suggesting that cooked meat products may act as reservoirs of drug-resistant bacteria and may facilitate the spread of resistance genes.


Sign in / Sign up

Export Citation Format

Share Document