scholarly journals Modulation of intestinal microbiota and immunometabolic parameters by caloric restriction and lactic acid bacteria

2019 ◽  
Vol 124 ◽  
pp. 188-199 ◽  
Author(s):  
Emanuel Fabersani ◽  
Matías Russo ◽  
Antonela Marquez ◽  
Claudia Abeijón-Mukdsi ◽  
Roxana Medina ◽  
...  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Dayong Ren ◽  
Shengjie Gong ◽  
Jingyan Shu ◽  
Jianwei Zhu ◽  
Hongyan Liu ◽  
...  

Aquaculture ◽  
2008 ◽  
Vol 278 (1-4) ◽  
pp. 188-191 ◽  
Author(s):  
José L. Balcázar ◽  
Daniel Vendrell ◽  
Ignacio de Blas ◽  
Imanol Ruiz-Zarzuela ◽  
José L. Muzquiz ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 2141
Author(s):  
Ji Young Jung ◽  
Sang-Soo Han ◽  
Z-Hun Kim ◽  
Myung Hoo Kim ◽  
Hye Kyeong Kang ◽  
...  

Lactic acid bacteria (LAB) are probiotic candidates that may restore the balance of microbiota populations in intestinal microbial ecosystems by controlling pathogens and thereby promoting host health. The goal of this study was to isolate potential probiotic LAB strains and characterize their antimicrobial abilities against pathogens in intestinal microbiota. Among 54 LAB strains isolated from fermented products, five LAB strains (NSMJ15, NSMJ16, NSMJ23, NSMJ42, and NFFJ04) were selected as potential probiotic candidates based on in vitro assays of acid and bile salt tolerance, cell surface hydrophobicity, adhesion to the intestinal epithelium, and antagonistic activity. Phylogenetic analysis based on 16S rRNA genes showed that they have high similarities of 99.58–100% to Lacticaseibacillus paracasei strains NSMJ15 and NFFJ04, Lentilactobacillus parabuchneri NSMJ16, Levilactobacillus brevis NSMJ23, and Schleiferilactobacillus harbinensis NSMJ42. To characterize their antimicrobial abilities against pathogens in intestinal microbiota, the impact of cell-free supernatant (CFS) treatment in 10% (v/v) fecal suspensions prepared using pooled cattle feces was investigated using in vitro batch cultures. Bacterial community analysis using rRNA amplicon sequencing for control and CFS-treated fecal samples at 8 and 16 h incubation showed the compositional change after CFS treatment for all five LAB strains. The changed compositions were similar among them, but there were few variable increases or decreases in some bacterial groups. Interestingly, as major genera that could exhibit pathogenicity and antibiotic resistance, the members of Bacillus, Escherichia, Leclercia, Morganella, and Vagococcus were decreased at 16 h in all CFS-treated samples. Species-level classification suggested that the five LAB strains are antagonistic to gut pathogens. This study showed the probiotic potential of the five selected LAB strains; in particular, their antimicrobial properties against pathogens present in the intestinal microbiota. These strains would therefore seem to play an important role in modulating the intestinal microbiome of the host.


2015 ◽  
Vol 56 (9) ◽  
pp. 1440-1453 ◽  
Author(s):  
Nuria Salazar ◽  
Miguel Gueimonde ◽  
Clara G. de los Reyes-Gavilán ◽  
Patricia Ruas-Madiedo

2016 ◽  
Vol 7 (3) ◽  
pp. 337-344 ◽  
Author(s):  
T. Asama ◽  
Y. Kimura ◽  
T. Kono ◽  
T. Tatefuji ◽  
K. Hashimoto ◽  
...  

It is well known that lactic acid bacteria supplementation is beneficial for intestinal conditions such as microbiota; however, the effects of killed-lactic acid bacteria on intestinal conditions are largely unclear. This study aimed to evaluate the effect of heat-killed Lactobacillus kunkeei YB38 (YB38) at a dose of approximately 10 mg/day on human intestinal environment and bowel movement. This single-blind study enrolled 29 female subjects with a low defecation frequency who consumed heat-killed YB38 at four increasing dosage levels: 0 (placebo), 2, 10, and 50 mg. Each dose was consumed daily for two weeks, with a two-week baseline period preceding the dosing-period and a two-week washout period ending the study. Observed levels of Bacteroides fragilis group significantly decreased with intake of heat-killed YB38 at ≥10 mg/day compared with levels during placebo intake (P<0.01). Faecal pH significantly decreased with 10 and 50 mg/day intake (P<0.01 and 0.05, respectively). Acetic acid levels tended to increase in faeces at the 50 mg/day dose (P<0.1). Bowel movement tended to increase in all heat-killed YB38 intake periods (P<0.1). In conclusion, heat-killed YB38 altered human intestinal microbiota at doses of ≥10 mg/day and tended to increase bowel movement at ≥2 mg/day. This is the first study to show the intestinal microbiota-altering effect of L. kunkeei and to report the bowel movement-improving effect of heat-killed lactic acid bacteria.


Sign in / Sign up

Export Citation Format

Share Document