scholarly journals Widely targeted metabolome profiling of different colored sesame (Sesamum indicum L.) seeds provides new insight into their antioxidant activities

2022 ◽  
Vol 151 ◽  
pp. 110850
Author(s):  
Senouwa Segla Koffi Dossou ◽  
Fangtao Xu ◽  
Jun You ◽  
Rong Zhou ◽  
Donghua Li ◽  
...  
mSphere ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Jocelyn M. Choo ◽  
Tokuwa Kanno ◽  
Nur Masirah Mohd Zain ◽  
Lex E. X. Leong ◽  
Guy C. J. Abell ◽  
...  

ABSTRACT Despite the fundamental importance of antibiotic therapies to human health, their functional impact on the intestinal microbiome and its subsequent ability to recover are poorly understood. Much research in this area has focused on changes in microbiota composition, despite the interdependency and overlapping functions of many members of the microbial community. These relationships make prediction of the functional impact of microbiota-level changes difficult, while analyses based on the metabolome alone provide relatively little insight into the taxon-level changes that underpin changes in metabolite levels. Here, we used combined microbiota and metabolome profiling to characterize changes associated with clinically important antibiotic combinations with distinct effects on the gut. Correlation analysis of changes in the metabolome and microbiota indicate that a combined approach will be essential for a mechanistic understanding of the functional impact of distinct antibiotic classes. The intestinal microbiome plays an essential role in regulating many aspects of host physiology, and its disruption through antibiotic exposure has been implicated in the development of a range of serious pathologies. The complex metabolic relationships that exist between members of the intestinal microbiota and the potential redundancy in functional pathways mean that an integrative analysis of changes in both structure and function are needed to understand the impact of antibiotic exposure. We used a combination of next-generation sequencing and nuclear magnetic resonance (NMR) metabolomics to characterize the effects of two clinically important antibiotic treatments, ciprofloxacin and vancomycin-imipenem, on the intestinal microbiomes of female C57BL/6 mice. This assessment was performed longitudinally and encompassed both antibiotic challenge and subsequent microbiome reestablishment. Both antibiotic treatments significantly altered the microbiota and metabolite compositions of fecal pellets during challenge and recovery. Spearman’s correlation analysis of microbiota and NMR data revealed that, while some metabolites could be correlated with individual operational taxonomic units (OTUs), frequently multiple OTUs were associated with a significant change in a given metabolite. Furthermore, one metabolite, arginine, can be associated with increases/decreases in different sets of OTUs under differing conditions. Taken together, these findings indicate that reliance on shifts in one data set alone will generate an incomplete picture of the functional effect of antibiotic intervention. A full mechanistic understanding will require knowledge of the baseline microbiota composition, combined with both a comparison and an integration of microbiota, metabolomics, and phenotypic data. IMPORTANCE Despite the fundamental importance of antibiotic therapies to human health, their functional impact on the intestinal microbiome and its subsequent ability to recover are poorly understood. Much research in this area has focused on changes in microbiota composition, despite the interdependency and overlapping functions of many members of the microbial community. These relationships make prediction of the functional impact of microbiota-level changes difficult, while analyses based on the metabolome alone provide relatively little insight into the taxon-level changes that underpin changes in metabolite levels. Here, we used combined microbiota and metabolome profiling to characterize changes associated with clinically important antibiotic combinations with distinct effects on the gut. Correlation analysis of changes in the metabolome and microbiota indicate that a combined approach will be essential for a mechanistic understanding of the functional impact of distinct antibiotic classes.


Food Research ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 121-128
Author(s):  
R. Surya ◽  
A. Romulo ◽  
Y. Suryani

Tempeh is an Indonesian traditional food produced from soybeans through a mould fermentation involving Rhizopus oligosporus. It is rich in bioactive phytochemicals, including isoflavones that are known to exhibit antioxidant activities. This study aimed to investigate the ability of tempeh ethanol extract to reduce cellular reactive oxygen species (ROS) levels in HepG2 cells in vitro. Tempeh extract exhibited greater total phenolics, total flavonoids and free radical inhibition capacity than soybean extract. Both tempeh extract and soybean extract reduced the basal levels of cellular ROS in the cells, but tempeh extract induced higher expression of antioxidant enzymes [catalase, superoxide dismutase-2 (SOD2) and superoxide dismutase-3 (SOD3)] compared to soybean extract. This study provides novel evidence suggesting the ability of tempeh to tackle cellular oxidative stress by upregulating the expression of antioxidant enzymes. These findings would give an insight into the potential of tempeh to be developed as a functional food beneficial for human health.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3220
Author(s):  
Dóra Lakk-Bogáth ◽  
Natalija Pantalon Juraj ◽  
Bashdar I. Meena ◽  
Berislav Perić ◽  
Srećko I. Kirin ◽  
...  

Heme and nonheme-type flavone synthase enzymes, FS I and FS II are responsible for the synthesis of flavones, which play an important role in various biological processes, and have a wide range of biomedicinal properties including antitumor, antimalarial, and antioxidant activities. To get more insight into the mechanism of this curious enzyme reaction, nonheme structural and functional models were carried out by the use of mononuclear iron, [FeII(CDA-BPA*)]2+ (6) [CDA-BPA = N,N,N’,N’-tetrakis-(2-pyridylmethyl)-cyclohexanediamine], [FeII(CDA-BQA*)]2+ (5) [CDA-BQA = N,N,N’,N’-tetrakis-(2-quinolilmethyl)-cyclohexanediamine], [FeII(Bn-TPEN)(CH3CN)]2+ (3) [Bn-TPEN = N-benzyl-N,N’,N’-tris(2-pyridylmethyl)-1,2- diaminoethane], [FeIV(O)(Bn-TPEN)]2+ (9), and manganese, [MnII(N4Py*)(CH3CN)]2+ (2) [N4Py* = N,N-bis(2-pyridylmethyl)-1,2-di(2-pyridyl)ethylamine)], [MnII(Bn-TPEN)(CH3CN)]2+ (4) complexes as catalysts, where the possible reactive intermediates, high-valent FeIV(O) and MnIV(O) are known and well characterised. The results of the catalytic and stoichiometric reactions showed that the ligand framework and the nature of the metal cofactor significantly influenced the reactivity of the catalyst and its intermediate. Comparing the reactions of [FeIV(O)(Bn-TPEN)]2+ (9) and [MnIV(O)(Bn-TPEN)]2+ (10) towards flavanone under the same conditions, a 3.5-fold difference in reaction rate was observed in favor of iron, and this value is three orders of magnitude higher than was observed for the previously published [FeIV(O)(N2Py2Q*)]2+ [N,N-bis(2-quinolylmethyl)-1,2-di(2-pyridyl)ethylamine] species.


2021 ◽  
Vol 43 (11) ◽  
Author(s):  
Ratnakumar Pasala ◽  
Brij Bihari Pandey ◽  
Sowjanya Lakshmi Gandi ◽  
Ramesh Kulasekaran ◽  
Arti Guhey ◽  
...  

2010 ◽  
Vol 105 (6) ◽  
pp. 458-464 ◽  
Author(s):  
Chiara Magni ◽  
Cinzia Ballabio ◽  
Patrizia Restani ◽  
Dalia Fuggetta ◽  
Claudia Alessandri ◽  
...  

2010 ◽  
Vol 19 (4) ◽  
pp. 1129-1134 ◽  
Author(s):  
Roberto Rodríguez Madrera ◽  
Belén Suárez Valles ◽  
Yolanda Diñeiro García ◽  
Paula del Valle Argüelles ◽  
Anna Picinelli Lobo

2020 ◽  
Vol 20 (4) ◽  
pp. 308-330 ◽  
Author(s):  
Navjot Singh Sethi ◽  
Deo Nandan Prasad ◽  
Rajesh Kumar Singh

2,4-Thiazolidinedione (2,4-TZD) is a versatile pharmacophore, a privileged scaffold, and a remarkable sulphur-containing heterocyclic compound with diverse pharmacological activities. The multifarious biological activities, due to different mechanisms of action, low cost, and easy availability of 2,4-TZD impressed medicinal chemists to integrate this moiety to develop various lead compounds with diverse therapeutic actions. This resulted in the swift development in the last decade for generating different new potential molecules bearing 2,4-TZD. In this review, the authors attempt to shape and present the latest investigations (2012 onwards) going on in generating promising 2,4-TZD containing lead compounds. The data has been collected and analyzed to develop the structure-activity relationship (SAR). The SAR and active pharmacophores of various leads accountable for antidiabetic, anticancer, antimicrobial, and antioxidant activities have also been illustrated. This review also highlighted some of the important chemical synthetic routes for the preparation of various 2,4-TZD derivatives. This review will definitely serve as a useful source of structural information to medicinal chemists and may be utilized for the strategic design of potent 2,4-TZD derivatives in the future.


2021 ◽  
Author(s):  
Shiming Deng ◽  
Qiang Xiao ◽  
Jian Hong ◽  
Zhijun Deng ◽  
Dan Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document