Long-term stand dynamics of old-growth mountain longleaf pine (Pinus palustris) woodlands

2016 ◽  
Vol 364 ◽  
pp. 154-164 ◽  
Author(s):  
Darcy H. Hammond ◽  
J. Morgan Varner ◽  
Zhaofei Fan ◽  
John S. Kush
1980 ◽  
Vol 4 (2) ◽  
pp. 77-79
Author(s):  
Robert C. Sparks ◽  
Norwin E. Linnartz ◽  
Harold E. Harris

Abstract Pruning and thinning a young natural stand of longleaf pine (Pinus palustris Mill.) in southwest Louisiana had little influence on height. However, diameter growth was reduced substantially as pruning intensity or stocking rate increased up to 25-percent live crown and 200 stems per acre, respectively. Improved diameter growth at lower stocking rates was not sufficient to equal the total basal area increment of 200 trees per acre.


1993 ◽  
Vol 17 (1) ◽  
pp. 10-15 ◽  
Author(s):  
William D. Boyer

Abstract Well-stocked mature longleaf pine (Pinus palustris Mill.) stands were cut to five residual basal areas in 1957, namely 9, 18, 27, 36, and 45 ft² per ac, to observe the effect of stand density on seed production and seedling establishment. Seedlings, mainly from the 1955 or 1961seed crops, were established in treated stands. All pines on net 0.9 ac plots were remeasured in 1991 to determine the effect of residual pine density on development of the regeneration. Even the lightest residual overstory converted the structure of 29- to 35- yr-old ingrowth into the reverse-Jdiameter class distribution characteristic of uneven-aged stands. Four or six residual trees, now comprising 7 to 10 ft² basal area (ba)/ac, reduced ingrowth basal area to about half that of same-aged stands released from overstory competition. Merchantable volume of ingrowth under theselow residual densities averaged 40% of that in released stands. Mean annual per ac volume increment of ingrowth averaged 21 to 22 ft³ under the 9 ft² density but did not exceed 7 ft³ under any residual density above this. The potential impact of significant growth reductionsshould be taken into account when considering uneven-aged management methods for longleaf pine. South. J. Appl. For. 17(1):10-15.


2020 ◽  
Vol 50 (7) ◽  
pp. 624-635
Author(s):  
Patrick J. Curtin ◽  
Benjamin O. Knapp ◽  
Steven B. Jack ◽  
Lance A. Vickers ◽  
David R. Larsen ◽  
...  

Recent interest in continuous cover forest management of longleaf pine (Pinus palustris Mill.) ecosystems raises questions of long-term sustainability because of uncertainty in rates of canopy recruitment of longleaf pine trees. We destructively sampled 130 naturally regenerated, midstory longleaf pines across an 11 300 ha, second-growth longleaf pine landscape in southwestern Georgia, United States, to reconstruct individual tree height growth patterns. We tested effects of stand density (using a competition index) and site quality (based on two site classifications: mesic and xeric) on height growth and demographics of midstory trees. We also compared height growth of paired midstory and overstory trees to infer stand regeneration and recruitment dynamics. In low-density stands, midstory trees were younger and grew at greater rates than trees within high-density stands. Midstory trees in low-density stands were mostly from a younger regeneration cohort than their paired overstory trees, whereas midstory–overstory pairs in high-density stands were mostly of the same cohort. Our results highlight the importance of releasing midstory longleaf pine trees from local competition for sustained height growth in partial-harvesting management systems. They also demonstrate patterns of long-term persistence in high-density stands, indicating flexibility in the canopy recruitment process of this shade-intolerant tree species.


Weed Science ◽  
1980 ◽  
Vol 28 (3) ◽  
pp. 255-257 ◽  
Author(s):  
J. L. Michael

Twenty years after aerial application of 2.24 kg ae/ha of the butoxy ethanol ester of 2,4,5-T [(2,4,5-trichlorophenoxy)acetic acid] to release grass stage longleaf pine (Pinus palustris Mill.) seedlings, stocking was the same for each of three treated and control 4-ha plots. Treated plots, however, had significantly greater tree diameter (10%), taller trees (17%), and more merchantable tree volume/ha (40%). Merchantable tree volume differences 20 yr after treatment represent an 8 yr growth advantage for treated plots.


Oikos ◽  
1995 ◽  
Vol 72 (1) ◽  
pp. 99 ◽  
Author(s):  
Susan L. Grace ◽  
William J. Platt

2009 ◽  
Vol 65 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Saskia L. Van De Gevel ◽  
Justin L. Hart ◽  
Henri D. Grissino-Mayer ◽  
Kenneth W. Robinson

2021 ◽  
Vol 4 ◽  
Author(s):  
John L. Willis ◽  
Ajay Sharma ◽  
John S. Kush

Emulating natural disturbance has become an increasingly important restoration strategy. In the fire-maintained woodlands of the southeastern United States, contemporary restoration efforts have focused on approximating the historical fire regime by burning at short intervals. Due to concerns over escape and damage to mature trees, most prescribed burning has occurred in the dormant season, which is inconsistent with the historical prevalence of lightning-initiated fire in the region. This discordance between contemporary prescribed burning and what is thought to be the historical fire regime has led some to question whether dormant season burning should remain the most common management practice; however, little is known about the long-term effects of repeated growing season burning on the health and productivity of desirable tree species. To address this question, we report on a long-term experiment comparing the effects of seasonal biennial burning (winter, spring, and summer) and no burning on the final survival status, height, diameter, and volume growth of 892 mature longleaf pine (Pinus palustris) over 23 years in three mature even-aged stands in southern Alabama, United States. Overall, longleaf pine survival across all treatments averaged 81 ± 2% [s.e]. Among seasonal burn treatments, survival was highest in the spring burns (82 ± 4%) but did not vary significantly from any other treatment (summer – 79 ± 4%, winter – 81 ± 4%, unburned – 84 ± 4%). However, survival was statistically influenced by initial diameter at breast height, as survival of trees in the largest size class (30 cm) was 40% higher than trees in the smallest size class (5 cm). Productivity of longleaf pine was not significantly different among treatment averages in terms of volume (38.9–44.1 ± 6.0 m3 ha–1), diameter (6.0–6.7 ± 0.3 cm), and height (2.5–3.4 ± 0.4 m) growth. Collectively, our results demonstrate that burning outside the dormant season will have little impact on mature longleaf pine survival and growth. This finding has important implications for the maintenance of restored southeastern woodlands, as interest in burning outside the dormant season continues to grow.


1993 ◽  
Vol 17 (4) ◽  
pp. 174-179 ◽  
Author(s):  
James P. Barnett ◽  
John P. Jones

Abstract Although longleaf pine (Pinus palustris Mill.) seeds are considered the most susceptible of the southern pines to damage during collection, processing, and storage, results of these studies show that high seed quality can be assured for periods up to 20 yr through proper handling and storing techniques. Recommendations for long-term storage include drying seeds to moisture contents of 10% or less and storing at subfreezing temperatures, preferably near 0°F. Reevaluation of stratification treatments applied under operational conditions indicates that the soaking in water that is necessary for seed imbibition reduces total germination in an amount proportional to the length of the soak. Stratification is not recommended except under very controlled conditions. South. J. Appl. For. 17(4):174-179.


Sign in / Sign up

Export Citation Format

Share Document