Chilling accumulation and photoperiod regulate rest break and bud burst in five subtropical tree species

2021 ◽  
Vol 485 ◽  
pp. 118813
Author(s):  
Rui Zhang ◽  
Fucheng Wang ◽  
Jinbin Zheng ◽  
Jianhong Lin ◽  
Heikki Hänninen ◽  
...  
Keyword(s):  
1995 ◽  
Vol 73 (2) ◽  
pp. 183-199 ◽  
Author(s):  
Heikki Hänninen

A framework is presented for modelling bud burst phenology of trees from the cool and temperate regions. Three ecophysiological aspects affecting the timing of bud burst are considered: (i) effects of environmental factors on the rest status of the bud, (ii) effect of rest status on the ability for bud burst, and (iii) direct effect of air temperature on the rate of development towards bud burst. Any model for bud burst phenology can be presented within the framework with three submodels, each of them addressing one of the corresponding three ecophysiological aspects. A total of 96 hypothetical models were synthesized by combining submodels presented in the literature. The models were tested in two experiments with saplings of Pinus sylvestris L. growing in experimental chambers at their natural site in eastern Finland. In the first experiment, air temperature and (or) concentration of atmospheric CO2 was elevated. Elevation of the air temperature hastened bud burst, whereas elevation of the concentration of CO2 did not affect it. Several models accurately predicted the timing of bud burst for natural conditions but too early for bud burst at the elevated temperatures. This finding suggests that (i) the risk of a premature bud burst with subsequent frost damage, as a result of climatic warming, was overestimated in a recent simulation study, and (ii) bud burst observations in natural conditions alone are not sufficient for the testing of these mechanistic models. Several models did predict the timing of bud burst accurately for all treatments, but none of them obtained sufficiently strong support from the findings to stand out as superior or uniquely correct. In the second experiment a photoperiod submodel for rest break was tested by exposing the saplings to short-day conditions. The short-day treatment had only a minor effect on the timing of bud burst. These results demonstrated the importance of the concept of model realism: the accuracy of a model can be lost in new conditions (e.g., global warming), unless the model correctly addresses the essential ecophysiological aspects of the regulation of timing of bud burst. Key words: annual cycle of development, chilling, dormancy, field test, photoperiod, rest break.


1994 ◽  
Vol 24 (3) ◽  
pp. 558-563 ◽  
Author(s):  
Heikki Hänninen ◽  
Riitta Backman

A hypothesis concerning a dynamic temperature response of rate of rest break was tested using a chilling experiment with three northern provenances of 2-year-old seedlings of Norway spruce (Piceaabies (L.) Karst.). According to the hypothesis, (i) within-population variation exists in the higher threshold for the rest-breaking temperature range and (ii) the higher threshold shifts towards lower temperatures as a result of chilling. The hypothesis was supported by experimental results. The results also indicated that at the beginning of the chilling period the higher threshold is a few degrees above 10 °C in the examined seedling populations. Two conventional theories about the rest period of the trees were unable to explain the observed results. The results facilitate further development of simulation models of rest break and bud burst of the trees.


Trees ◽  
2018 ◽  
Vol 32 (4) ◽  
pp. 1157-1164 ◽  
Author(s):  
Craig C. Brelsford ◽  
T. Matthew Robson

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 45
Author(s):  
Sina Cosmulescu ◽  
Dragoș Ștefănescu ◽  
Ana-Maria Stoenescu

Vegetation phenology is considered an important biological indicator in understanding the behaviour of ecosystems and how it responds to environmental cues. The aim of this paper is to provide information on the variability of phenological behaviours based on discriminant analysis using the R software package with the following libraries: ggplot2, heplots, candisc, MASS, car, and klaR. Three phenological phases were analysed with eight wild fruit tree species from a forest ecosystem in the southwestern part of Romania (44°05′19.5” N 23°54′03.5” E). It was found that there is a large and very large variability for the “bud burst” phenophase, medium and low for “full flowering”, and reduced for the “all petals fallen” phenophase. For the analyzed data, the discriminant analysis model has high accuracy (accuracy: 0.9583; 95% CI: (0.7888, 0.9989). Partition plots show the results of “full flowering” and “all petals fallen” as a function of the “bud burst” of pockmarks when separated into eight clusters and eight clusters of “full flowering” as a function of “all petals fallen”. The differences observed, from a phenological point of view, are not only due to the different cold requirements of these species but also to the temperatures during the spring.


2018 ◽  
Author(s):  
Craig C. Brelsford ◽  
T Matthew Robson

AbstractDuring spring, utilising multiple cues allow temperate tree species to coordinate their bud burst and leaf out, at the right moment to capitalise on favourable conditions for photosynthesis. Whilst the effect of blue light (400-500nm) has been shown to increase percentage bud burst of axillary shoots of Rosa sp, the effects of blue light on spring-time bud burst of temperate deciduous tree species has not previously been reported. We tested the hypotheses that blue light would advance spring bud burst in temperate tree species, and that late-successional species would respond more than early-successional species, who’s bud burst is primarily determined by temperature. The bud development of Alnus glutinosa, Betula pendula, and Quercus robur branches, cut from dormant trees, was monitored under two light treatments of equal photosynthetically active radiation (PAR, 400-700 nm) and temperature, either with or without blue light, under controlled environmental conditions. In the presence of blue light, the mean time required to reach 50% bud burst was reduced by 3.3 days in Betula pendula, 6 days in Alnus glutinosa, and 6.3 days in Quercus robur. This result highlights the potential of the blue region of the solar spectrum to be used as an extra cue that could help plants to regulate their spring phenology, alongside photoperiod and temperature. Understanding how plants combine photoreceptor-mediated cues with other environmental cues such as temperature to control phenology is essential if we are to accurately predict how tree species might respond to climate change.Key MessageAn LED spectrum containing blue light advanced bud burst in branches of Betula pendula, Alnus glutinosa and Quercus robur compared with a spectrum without blue light in a controlled environment.


2020 ◽  
Author(s):  
Matthias Arend ◽  
Cedric Zahnd ◽  
Günter Hoch

<p>Trees in temperate climates show distinct seasonality of leaf photosynthetic function and tree growth, which has strong influence on the annual cycle of terrestrial carbon sequestration. Thus, there are intense efforts to explore phenological pattern of leaf photosynthetic function and tree growth in temperate tree species and understand their internal and external regulation. In this presentation, we summarize our past research in this field, combining results from different experimental studies and field observations on a large number of European tree species. We show not only the well-known dependency of the onset of spring bud burst and leaf development on temperature and photoperiod and their large inter- and intra-specific variability, but also refer to further, fairly unknown, environmental factors. We give examples how varying soil properties and drought stress may interact with temperature on the seasonal timing of bud burst, photosynthesis, shoot growth and autumnal leaf senescence. Finally, we give information on the temporal coordination of bud burst, canopy greening and tree growth, showing strong differences among European tree species. With the collected information, we identify potential sources of uncertainty in approaches predicting the seasonal timing of leaf photosynthetic activity and tree growth with climate warming.</p><p> </p>


2016 ◽  
Vol 60 (11) ◽  
pp. 1711-1726 ◽  
Author(s):  
Maximilian Lange ◽  
Jörg Schaber ◽  
Andreas Marx ◽  
Greta Jäckel ◽  
Franz-Werner Badeck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document