NADPH oxidase 2 deletion enhances neurogenesis following traumatic brain injury

2018 ◽  
Vol 123 ◽  
pp. 62-71 ◽  
Author(s):  
Jing Wang ◽  
Merry W. Ma ◽  
Krishnan M. Dhandapani ◽  
Darrell W. Brann
2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Merry W. Ma ◽  
Jing Wang ◽  
Krishnan M. Dhandapani ◽  
Darrell W. Brann

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. After the initial primary mechanical injury, a complex secondary injury cascade involving oxidative stress and neuroinflammation follows, which may exacerbate the injury and complicate the healing process. NADPH oxidase 2 (NOX2) is a major contributor to oxidative stress in TBI pathology, and inhibition of NOX2 is neuroprotective. The NLRP3 inflammasome can become activated in response to oxidative stress, but little is known about the role of NOX2 in regulating NLRP3 inflammasome activation following TBI. In this study, we utilized NOX2 knockout mice to study the role of NOX2 in mediating NLRP3 inflammasome expression and activation following a controlled cortical impact. Expression of NLRP3 inflammasome components NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC), as well as its downstream products cleaved caspase-1 and interleukin-1β (IL-1β), was robustly increased in the injured cerebral cortex following TBI. Deletion of NOX2 attenuated the expression, assembly, and activity of the NLRP3 inflammasome via a mechanism that was associated with TXNIP, a sensor of oxidative stress. The results support the notion that NOX2-dependent inflammasome activation contributes to TBI pathology.


2018 ◽  
Vol 117 ◽  
pp. 66-75 ◽  
Author(s):  
Merry W. Ma ◽  
Jing Wang ◽  
Krishnan M. Dhandapani ◽  
Darrell W. Brann

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Changmeng Cui ◽  
Sixin Song ◽  
Jianzhong Cui ◽  
Yan Feng ◽  
Junling Gao ◽  
...  

Traumatic brain injury (TBI) is a worldwide phenomenon which results in significant neurological and cognitive deficits in humans. Vitamin D (VD) is implicated as a therapeutic strategy for various neurological diseases now. Recently, inhibition of the NADPH oxidase (NOX2) was reported to protect against oxidative stress (ROS) production. However, whether alterations in NOX2expression and NOX activity are associated with calcitriol (active metabolite of VD) treatment following TBI remains unclear. In the present study, rats were randomly assigned to the sham, TBI, and calcitriol-treated groups. Calcitriol was administered intraperitoneally (2 μg/kg) at 30 min, 24 h, and 48 h after TBI insult. We observed that calcitriol treatment alleviated neurobehavioral deficits and brain edema following TBI. At the molecular levels, administration of calcitriol activated the expression of VDR and downregulated NOX2as well as suppressed apoptosis cell rate in the hippocampus CA1 region of TBI rats. In conclusion, our findings indicate that the protective effects of calcitriol may be related to the modulation of NADPH oxidase and thereby ultimately inhibited the progression of apoptosis. Calcitriol may be promising as a protective intervention following TBI, and more study is warranted for its clinical testing in the future.


2013 ◽  
Vol 30 (5) ◽  
pp. 403-412 ◽  
Author(s):  
David J. Loane ◽  
Bogdan A. Stoica ◽  
Kimberly R. Byrnes ◽  
William Jeong ◽  
Alan I. Faden

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e34504 ◽  
Author(s):  
Quan-Guang Zhang ◽  
Melissa D. Laird ◽  
Dong Han ◽  
Khoi Nguyen ◽  
Erin Scott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document