Enterotoxigenic Escherichia coli and Salmonella enterica Typhimurium induce mitochondrial dysfunction, inflammation and oxidative stress conditions in porcine intestinal epithelial cells

2018 ◽  
Vol 128 ◽  
pp. S106
Author(s):  
Jerome Lapointe ◽  
Emilie Fortin ◽  
Noémie Bergeron ◽  
Laurie Lavergne ◽  
Caroline Roy ◽  
...  
2016 ◽  
Vol 84 (5) ◽  
pp. 1642-1649 ◽  
Author(s):  
T. P. Vipin Madhavan ◽  
James D. Riches ◽  
Martin J. Scanlon ◽  
Glen C. Ulett ◽  
Harry Sakellaris

CFA/I pili are representatives of a large family of related pili that mediate the adherence of enterotoxigenicEscherichia colito intestinal epithelial cells. They are assembled via the alternate chaperone-usher pathway and consist of two subunits, CfaB, which makes up the pilus shaft and a single pilus tip-associated subunit, CfaE. The current model of pilus-mediated adherence proposes that CFA/I has two distinct binding activities; the CfaE subunit is responsible for binding to receptors of unknown structure on erythrocyte and intestinal epithelial cell surfaces, while CfaB binds to various glycosphingolipids, including asialo-GM1. In this report, we present two independent lines of evidence that, contrary to the existing model, CfaB does not bind to asialo-GM1 independently of CfaE. Neither purified CfaB subunits nor CfaB assembled into pili bind to asialo-GM1. Instead, we demonstrate that binding activity toward asialo-GM1 resides in CfaE and this is essential for pilus binding to Caco-2 intestinal epithelial cells. We conclude that the binding activities of CFA/I pili for asialo-GM1, erythrocytes, and intestinal cells are inseparable, require the same amino acid residues in CfaE, and therefore depend on the same or very similar binding mechanisms.


Sign in / Sign up

Export Citation Format

Share Document