Saccharomyces cerevisiae decreases inflammatory responses induced by F4+ enterotoxigenic Escherichia coli in porcine intestinal epithelial cells

2011 ◽  
Vol 141 (1-2) ◽  
pp. 133-138 ◽  
Author(s):  
Galliano Zanello ◽  
François Meurens ◽  
Mustapha Berri ◽  
Claire Chevaleyre ◽  
Sandrine Melo ◽  
...  
2011 ◽  
Vol 1 (1) ◽  
pp. 16 ◽  
Author(s):  
S. Brijesh ◽  
Pundarikakshudu Tetali ◽  
Tannaz J. Birdi

Diarrhea is a major health concern in developing countries with enteropathogenic <em>Escherichia coli</em> (EPEC) being a leading cause of infantile diarrhea. Much of the pathology of EPEC infection is due to the inflammatory responses of infected intestinal epithelium through secretion of pro-inflammatory cytoki - nes such as interleukin (IL)-8. With medicinal plants gaining popularity as prospective antidiarrheal agents, we aimed to evaluate the effect of anti-diarrheal medicinal plants on secretion of IL-8 by epithelial cells in response to EPEC infection. The effect of the decoctions of four anti-diarrheal medicinal plants viz. <em>Aegle marmelos</em>, <em>Cyperus rotundus</em>, <em>Psidium guajava</em> and <em>Zingiber officinale</em> was studied on secretion of IL-8 by a human colon adenocarcinoma cell line, HT-29 infected with <em>E. coli </em>E2348/69. Two protocols were used viz. pre-incubation and post-incubation. The data obtained demonstrated that out of the four plants used, only <em>P. guajava</em> decreased secretion of IL-8 in the post-incubation protocol although in the pre-incubation protocol an increase was observed. A similar increase was seen with <em>C. rotundus</em> in the preincubation protocol. No effect on IL-8 secretion was observed with <em>A. marmelos</em> and <em>Z. officinale</em> in both protocols and with <em>C. rotundus </em>in the post-incubation protocol. The post-incubation protocol, in terms of clinical relevance, indicates the effect of the plant decoctions when used as treatment. Hence <em>P. guajava</em> may be effective in controlling the acute inflammatory response of the intestinal epithelial cells in response to EPEC infection.<p> </p>


2008 ◽  
Vol 76 (4) ◽  
pp. 1410-1422 ◽  
Author(s):  
Mohammed A. Khan ◽  
Saeid Bouzari ◽  
Caixia Ma ◽  
Carrie M. Rosenberger ◽  
Kirk S. B. Bergstrom ◽  
...  

ABSTRACT Enteropathogenic Escherichia coli (EPEC) and the murine pathogen Citrobacter rodentium belong to the attaching and effacing (A/E) family of bacterial pathogens. These noninvasive bacteria infect intestinal enterocytes using a type 3 secretion system (T3SS), leading to diarrheal disease and intestinal inflammation. While flagellin, the secreted product of the EPEC fliC gene, causes the release of interleukin 8 (IL-8) from epithelial cells, it is unclear whether A/E bacteria also trigger epithelial inflammatory responses that are FliC independent. The aims of this study were to characterize the FliC dependence or independence of epithelial inflammatory responses to direct infection by EPEC or C. rodentium. Following infection of Caco-2 intestinal epithelial cells by wild-type and ΔfliC EPEC, a rapid activation of several proinflammatory genes, including those encoding IL-8, monocyte chemoattractant protein 1, macrophage inflammatory protein 3α (MIP3α), and β-defensin 2, occurred in a FliC-dependent manner. These responses were accompanied by mitogen-activated protein kinase activation, as well as the Toll-like receptor 5 (TLR5)-dependent activation of NF-κB. At later infection time points, a subset of these proinflammatory genes (IL-8 and MIP3α) was also induced in cells infected with ΔfliC EPEC. The nonmotile A/E pathogen C. rodentium also triggered similar innate responses through a TLR5-independent but partially NF-κB-dependent mechanism. Moreover, the EPEC FliC-independent responses were increased in the absence of the locus of enterocyte effacement-encoded T3SS, suggesting that translocated bacterial effectors suppress rather than cause the FliC-independent inflammatory response. Thus, we demonstrate that infection of intestinal epithelial cells by A/E pathogens can trigger an array of proinflammatory responses from epithelial cells through both FliC-dependent and -independent pathways, expanding our understanding of the innate epithelial response to infection by these pathogens.


2016 ◽  
Vol 84 (5) ◽  
pp. 1642-1649 ◽  
Author(s):  
T. P. Vipin Madhavan ◽  
James D. Riches ◽  
Martin J. Scanlon ◽  
Glen C. Ulett ◽  
Harry Sakellaris

CFA/I pili are representatives of a large family of related pili that mediate the adherence of enterotoxigenicEscherichia colito intestinal epithelial cells. They are assembled via the alternate chaperone-usher pathway and consist of two subunits, CfaB, which makes up the pilus shaft and a single pilus tip-associated subunit, CfaE. The current model of pilus-mediated adherence proposes that CFA/I has two distinct binding activities; the CfaE subunit is responsible for binding to receptors of unknown structure on erythrocyte and intestinal epithelial cell surfaces, while CfaB binds to various glycosphingolipids, including asialo-GM1. In this report, we present two independent lines of evidence that, contrary to the existing model, CfaB does not bind to asialo-GM1 independently of CfaE. Neither purified CfaB subunits nor CfaB assembled into pili bind to asialo-GM1. Instead, we demonstrate that binding activity toward asialo-GM1 resides in CfaE and this is essential for pilus binding to Caco-2 intestinal epithelial cells. We conclude that the binding activities of CFA/I pili for asialo-GM1, erythrocytes, and intestinal cells are inseparable, require the same amino acid residues in CfaE, and therefore depend on the same or very similar binding mechanisms.


Sign in / Sign up

Export Citation Format

Share Document