scholarly journals Innate and adaptive immune responses of catfish antigen-presenting cells to live attenuated Edwardsiella ictaluri vaccines

2016 ◽  
Vol 53 ◽  
pp. 63
Author(s):  
Adef Kordon ◽  
Hossam Abdelhamed ◽  
Wes A. Baumgartner ◽  
Attila Karsi ◽  
Lesya M. Pinchuk
2021 ◽  
Vol 4 (2) ◽  
pp. 8011-8019
Author(s):  
Giovanna Ganem Favero ◽  
Isabela Lopes Martin ◽  
Fernanda Pereira da Silva Albino ◽  
Carlos Eduardo Fontana ◽  
Sérgio Luiz Pinheiro ◽  
...  

Leptin is a hormone synthesized predominantly by white adipose tissue. Its production levels are directly proportional to the total mass of this tissue in an individual’s body. Apart from its classic role in the regulation of hunger and satiety, it also plays an important part in scenarios involving innate and adaptive immune responses. It has been discovered that leptin levels are altered in a variety of inflammatory responses, such as periodontitis, a condition which derives from a persistent inflammatory immune response from a host facing bacterial infection. The initial trigger for this reaction is the recognition of the pathogens by antigen presenting cells, such as macrophages and dendritic cells, whose actions can be influenced by leptin. This review aims to present the relationship between leptin, dendritic cells and macrophages in the context of periodontal disease. Thus, we have assembled the most important findings related to leptin’s role in the modulation of the immune response carried out by these cells in periodontitis.


2018 ◽  
Vol 8 (2) ◽  
pp. 92-104 ◽  
Author(s):  
Grazia Maria Virzì ◽  
Jun Zhang ◽  
Federico Nalesso ◽  
Claudio Ronco ◽  
Peter A. McCullough

Backgrounds: Dendritic cells (DCs) are antigen-presenting cells that play a central role in innate and adaptive immune responses; however, the cross talk between cardiac and renal DCs in cardiorenal syndrome (CRS) has not yet been fully elucidated. In this setting, endothelial cells (ECs) also contribute to immune responses. Summary: DC and EC activation and dysfunction have a central role in the pathogenesis of CRS. Regarding immune responses in CRS, it is unknown whether ECs may serve as antigen-presenting cells or act synergistically with DCs to actively participate in innate and adaptive immune responses. This review first focuses on the burden of concomitant heart and renal DCs in the context of CRS; it examines what is known of DCs in animal models, and proposes a central role for DCs in all types of CRS. Second, this review briefly describes the role of ECs in the context of CRS. Key Messages: Understanding the role of DCs and ECs in immune response could lead to the development of novel therapies for the prevention and treatment of CRS.


2018 ◽  
Vol 215 (11) ◽  
pp. 2901-2918 ◽  
Author(s):  
Maria Buxadé ◽  
Hector Huerga Encabo ◽  
Marta Riera-Borrull ◽  
Lucía Quintana-Gallardo ◽  
Pilar López-Cotarelo ◽  
...  

MHCII in antigen-presenting cells (APCs) is a key regulator of adaptive immune responses. Expression of MHCII genes is controlled by the transcription coactivator CIITA, itself regulated through cell type–specific promoters. Here we show that the transcription factor NFAT5 is needed for expression of Ciita and MHCII in macrophages, but not in dendritic cells and other APCs. NFAT5-deficient macrophages showed defective activation of MHCII-dependent responses in CD4+ T lymphocytes and attenuated capacity to elicit graft rejection in vivo. Ultrasequencing analysis of NFAT5-immunoprecipitated chromatin uncovered an NFAT5-regulated region distally upstream of Ciita. This region was required for CIITA and hence MHCII expression, exhibited NFAT5-dependent characteristics of active enhancers such as H3K27 acetylation marks, and required NFAT5 to interact with Ciita myeloid promoter I. Our results uncover an NFAT5-regulated mechanism that maintains CIITA and MHCII expression in macrophages and thus modulates their T lymphocyte priming capacity.


Rheumatology ◽  
2020 ◽  
Author(s):  
Murad Alahdal ◽  
Hui Zhang ◽  
Rongxiang Huang ◽  
Wei Sun ◽  
Zhiqin Deng ◽  
...  

Abstract Dendritic cells (DCs) are a cluster of heterogeneous antigen-presenting cells that play a pivotal role in both innate and adaptive immune responses. Rare reports have discussed their role in OA immunopathogenesis. Recently, DCs derived from the synovial fluid of OA mice were shown to have increased expression of toll-like receptors. Moreover, from in vitro studies it was concluded that DCs derived from OA patients had secreted high levels of inflammatory cytokines. Likewise, a significant increase in CD123+BDCA-2 plasmacytoid DCs has been observed in the synovial fluid of OA patients. Furthermore, DCs have a peripheral tolerance potential and can become regulatory under specific circumstances. This could be exploited as a promising tool to eliminate immunoinflammatory manifestations in OA disease. In this review, the potential roles DCs could play in OA pathogenesis have been described. In addition, suggestions for the development of new immunotherapeutic strategies involving intra-articular injections of tolerogenic plasmacytoid DCs for treating OA inflammations have been made.


2006 ◽  
Vol 74 (8) ◽  
pp. 4624-4633 ◽  
Author(s):  
Maureen L. Drakes ◽  
Steven J. Czinn ◽  
Thomas G. Blanchard

ABSTRACT Helicobacter infections are present in approximately 50% of humans, causing severe illnesses such as gastritis and malignancies. Dendritic cells (DC) are critical antigen-presenting cells which link innate and adaptive immune responses. The mechanism of dendritic cell regulation in Helicobacter-induced gastritis is poorly understood. These studies characterized DC isolated from the lamina propria of Helicobacter-infected mice and analyzed innate and adaptive immune responses elicited by Helicobacter antigen (Ag)-pulsed DC. The presence of DC was elevated in the gastric lamina propria infiltrate of infected mice in comparison with controls. After treatment with Helicobacter felis Ag, DC were polarized to secrete interleukin-6 as the dominant cytokine. In the presence of DC and Helicobacter Ag, responder allogeneic T cells in culture exhibited limited cell division. We suggest that the response of DC and T cells to Helicobacter Ag is critical to the chronic persistence of Helicobacter-induced gastritis.


Author(s):  
Stefano Ugel ◽  
Stefania Canè ◽  
Francesco De Sanctis ◽  
Vincenzo Bronte

Immunotherapy has revolutionized cancer treatment over the past decade. Nonetheless, prolonged survival is limited to relatively few patients. Cancers enforce a multifaceted immune-suppressive network whose nature is progressively shaped by systemic and local cues during tumor development. Monocytes bridge innate and adaptive immune responses and can affect the tumor microenvironment through various mechanisms that induce immune tolerance, angiogenesis, and increased dissemination of tumor cells. Yet monocytes can also give rise to antitumor effectors and activate antigen-presenting cells. This yin-yang activity relies on the plasticity of monocytes in response to environmental stimuli. In this review, we summarize current knowledge of the ontogeny, heterogeneity, and functions of monocytes and monocyte-derived cells in cancer, pinpointing the main pathways that are important for modeling the immunosuppressive tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document