Thermal expansion of slag and fly ash from coal gasification in IGCC power plant

Fuel ◽  
2006 ◽  
Vol 85 (16) ◽  
pp. 2352-2358 ◽  
Author(s):  
M AINETO ◽  
A ACOSTA ◽  
J RINCON ◽  
M ROMERO
Author(s):  
P. Klimantos ◽  
N. Koukouzas ◽  
E. Kakaras

Within this study energetic and exergetic theoretical analyses of a novel IGCC power plant concept with CO2 capture are carried out. The core process of the concept examined is based on the high pressure steam gasification of high moisture low grade coals where CO2 is captured reacting exothermically with CaO-based sorbents and high hydrogen-content carbon-free fuel gas is produced without using additional shift reactors and CO2 separation stages. The carbonated sorbents are continuously fed to an oxygen blown calcination reactor where pure CO2 is released and active CaO is reproduced. This concept can be realised in a dual fluidised bed reactor system where coal gasification and CaCO3 calcination are taking place simultaneously. In this paper possible plant configurations are presented and detailed simulation of 400 MWe IGCC power plant based on a state of the art gas turbine cycle with a three pressure stage heat recovery steam generator is performed using the ASPEN Plus simulator. The calculated results demonstrate the capability of the power plant to deliver almost decarbonised electricity while achieving net plant efficiencies at about 38.4% of coal lower heating value (LHV). Based on the energy analysis and the data generated from the simulation an exergy analysis was performed in order to quantify and localize the thermodynamic irreversibility in each process component as well as to asses the overall thermodynamic imperfection of the proposed process.


Author(s):  
Ashok D. Dave ◽  
Sina Rezvani ◽  
Ye Huang ◽  
David McIlveen-Wright ◽  
Neil Hewitt

The Pre-combustion IGCC Power Generation technology presents novel challenges in terms of gas turbine operation. The hydrogen-rich gaseous fuel has much higher heating value than conventional syngas. In a state of the art precombustion IGCC power plant, the fuel utilised in a gas turbine is generated on-site by a coal gasification unit followed by gas clean-up, water-gas (sour) shift reaction and CO2 sequestration. The Pressure Swing Adsorption (PSA) process is techno-economically promising option for separation of hydrogen from the syngas. However, the PSA process is inherently transient in nature. Performance of PSA process is dependent on the process configuration and various devised different PSA process configurations and reported the purity and recovery rate of hydrogen and carbon dioxide rich product gas streams. However, these process configurations published in literature are not directly adaptable to the state of the art pre-combustion IGCC power plant due to variations in the feed composition and condition. Moreover, the current research works have not addressed the impact of varying amount of hydrogen recovery on the power generation characteristics. Two important configurations of the PSA process are identified and their CAPEX is estimated.


2014 ◽  
Vol 59 (4) ◽  
pp. 1107-1118
Author(s):  
Petr Buryan ◽  
Zdeněk Bučko ◽  
Petr Mika

Abstract The company Sokolovská uhelná, was the largest producer of city gas in the Czech Republic. After its substitution by natural gas the gasification technology became the basis of the production of electricity in the combine cycle power plant with total output 400 MW. For the possibility of gasification of liquid by- -products forming during the coal gasification a entrained-flow gasifier capable to process also alternative liquid fuels has been in installed. The concentrated waste gas with these sulphur compounds is conducted to the desulphurisation where the highly desired, pure, 96 % H2SO4 is produced. Briquettable brown coal is crushed, milled and dried and then it is passed into briquetting presses where briquettes, used mainly as a fuel in households, are pressed without binder in the punch under the pressure of 175 MPa. Fine brown coal dust (multidust) is commercially used for heat production in pulverized-coal burners. It forms not only during coal drying after separation on electrostatic separators, but it is also acquired by milling of dried coal in a vibratory bar mill. Slag from boilers of classical power plant, cinder form generators and ashes deposited at the dump are dehydrated and they are used as a quality bedding material during construction of communications in the mines of SUAS. Fly ash is used in building industry for partial substitution of cement in concrete. Flue gases after separation of fly ash are desulphurized by wet limestone method, where the main product is gypsum used, among others, in the building industry. Expanded clays from overburdens of coal seams, that are raw material for the production of “Liapor” artificial aggregate, are used heavily. This artificial aggregate is characterized by outstanding thermal and acoustic insulating properties.


2013 ◽  
Vol 12 (2) ◽  
pp. 337-342 ◽  
Author(s):  
Firuta Goga ◽  
Roxana Dudric ◽  
Calin Cormos ◽  
Florica Imre ◽  
Liliana Bizo ◽  
...  

2018 ◽  
Vol 69 (8) ◽  
pp. 2040-2044
Author(s):  
Georgeta Velciu ◽  
Virgil Marinescu ◽  
Adriana Moanta ◽  
Ladislau Radermacher ◽  
Adriana Mariana Bors

The influence of fly ash adittion (90 % fraction [ 100 mm) on the cement mortar characteristics was studied. The XRD, XRF, SEM and FTIR determinations indicated that fly ash used has a hollow microstructure of microsphere and cenosphere whose total content in SiO2, Al2O3 and Fe2O3 is 88.63 % and that of CaO and MgO of 8.55 %. The mechanical, thermal and dielectric determinations made on mortar samples with content of fly ash in the 0-40 % range have highlighted fact that the mechanical strength of cement mortars is maximal at 20 %, the increase in fly ash content leads to a decrease in relative density and thermal conductivity as well as and to increased dielectric losses tgd.


Sign in / Sign up

Export Citation Format

Share Document