High speed imaging of OH* chemiluminescence and natural luminosity of low temperature diesel spray combustion

Fuel ◽  
2012 ◽  
Vol 99 ◽  
pp. 226-234 ◽  
Author(s):  
Ji Zhang ◽  
Wei Jing ◽  
Tiegang Fang
Author(s):  
Iheb Haffar ◽  
Pierre Latil ◽  
Frédéric Flin ◽  
Christian Geindreau ◽  
François Bonnel ◽  
...  

2011 ◽  
Author(s):  
Priyesh Patel ◽  
Paul Richards ◽  
Ramanarayanan Balachandran ◽  
Nicos Ladommatos

Author(s):  
Yuhui Wang ◽  
◽  
Jialing Le ◽  

Nonpremixed rotating detonation waves (RDWs) for ethylene or hydrogen and air sources at room temperatures 283-284 K were obtained in the same hollow combustor. The combustor was optically accessible by embedded a piece of quartz glass in the combustor wall. The hollow combustor channel here had an outer diameter 100 mm. Fuel and air were injected into the combustor from 150 cylindrical orifices of a diameter 0.8 mm axially and a circular channel with a width 1 mm radially, respectively. The detonation speeds for ethylene and air were 1562 or 1389 m/s for the air flow rate 642.35 g/s at an equivalence ratio 0.78. The detonation speed for hydrogen and air were 2013 m/s for the air flow rate 327.73 g/s at an equivalence ratio 1.24. Hydrogen operation was more stable than ethylene operation in the condition of low temperature gas sources. High-speed images showed RDW structures were changeful and unstable. Low-temperature regions could intrude into and break the detonation wave.


2019 ◽  
Vol 47 (3) ◽  
pp. 196-210
Author(s):  
Meghashyam Panyam ◽  
Beshah Ayalew ◽  
Timothy Rhyne ◽  
Steve Cron ◽  
John Adcox

ABSTRACT This article presents a novel experimental technique for measuring in-plane deformations and vibration modes of a rotating nonpneumatic tire subjected to obstacle impacts. The tire was mounted on a modified quarter-car test rig, which was built around one of the drums of a 500-horse power chassis dynamometer at Clemson University's International Center for Automotive Research. A series of experiments were conducted using a high-speed camera to capture the event of the rotating tire coming into contact with a cleat attached to the surface of the drum. The resulting video was processed using a two-dimensional digital image correlation algorithm to obtain in-plane radial and tangential deformation fields of the tire. The dynamic mode decomposition algorithm was implemented on the deformation fields to extract the dominant frequencies that were excited in the tire upon contact with the cleat. It was observed that the deformations and the modal frequencies estimated using this method were within a reasonable range of expected values. In general, the results indicate that the method used in this study can be a useful tool in measuring in-plane deformations of rolling tires without the need for additional sensors and wiring.


Sign in / Sign up

Export Citation Format

Share Document