The impact of nitric oxide on knock in the octane rating engine

Fuel ◽  
2019 ◽  
Vol 235 ◽  
pp. 495-503 ◽  
Author(s):  
Zhongyuan Chen ◽  
Hao Yuan ◽  
Tien Mun Foong ◽  
Yi Yang ◽  
Michael Brear
2014 ◽  
Vol 39 (3) ◽  
pp. 275-283 ◽  
Author(s):  
Yasemin Gündüztepe ◽  
Setenay Mit ◽  
Ersel Geçioglu ◽  
Neslihan Gurbuz ◽  
Osman Salkacı ◽  
...  

Perfusion ◽  
2021 ◽  
pp. 026765912110148
Author(s):  
Joseph Mc Loughlin ◽  
Lorraine Browne ◽  
John Hinchion

Objectives: Cardiac surgery using cardiopulmonary bypass frequently provokes a systemic inflammatory response syndrome. This can lead to the development of low cardiac output syndrome (LCOS). Both of these can affect morbidity and mortality. This study is a systematic review of the impact of gaseous nitric oxide (gNO), delivered via the cardiopulmonary bypass (CPB) circuit during cardiac surgery, on post-operative outcomes. It aims to summarise the evidence available, to assess the effectiveness of gNO via the CPB circuit on outcomes, and highlight areas of further research needed to develop this hypothesis. Methods: A comprehensive search of Pubmed, Embase, Web of Science and the Cochrane Library was performed in May 2020. Only randomised control trials (RCTs) were considered. Results: Three studies were identified with a total of 274 patients. There was variation in the outcomes measures used across the studies. These studies demonstrate there is evidence that this intervention may contribute towards cardioprotection. Significant reductions in cardiac troponin I (cTnI) levels and lower vasoactive inotrope scores were seen in intervention groups. A high degree of heterogeneity between the studies exists. Meta-analysis of the duration of mechanical ventilation, length of ICU stay and length of hospital stay showed no significant differences. Conclusion: This systematic review explored the findings of three pilot RCTs. Overall the hypothesis that NO delivered via the CPB circuit can provide cardioprotection has been supported by this study. There remains a significant gap in the evidence, further high-quality research is required in both the adult and paediatric populations.


2015 ◽  
Vol 34 (4) ◽  
pp. 300-307 ◽  
Author(s):  
Swati Omanwar ◽  
M. Fahim

Vascular endothelium plays a vital role in the organization and function of the blood vessel and maintains homeostasis of the circulatory system and normal arterial function. Functional disruption of the endothelium is recognized as the beginning event that triggers the development of consequent cardiovascular disease (CVD) including atherosclerosis and coronary heart disease. There is a growing data associating mercury exposure with endothelial dysfunction and higher risk of CVD. This review explores and evaluates the impact of mercury exposure on CVD and endothelial function, highlighting the interplay of nitric oxide and oxidative stress.


2011 ◽  
Vol 301 (5) ◽  
pp. F979-F996 ◽  
Author(s):  
Aurélie Edwards ◽  
Anita T. Layton

We expanded our region-based model of water and solute exchanges in the rat outer medulla to incorporate the transport of nitric oxide (NO) and superoxide (O2−) and to examine the impact of NO-O2− interactions on medullary thick ascending limb (mTAL) NaCl reabsorption and oxygen (O2) consumption, under both physiological and pathological conditions. Our results suggest that NaCl transport and the concentrating capacity of the outer medulla are substantially modulated by basal levels of NO and O2−. Moreover, the effect of each solute on NaCl reabsorption cannot be considered in isolation, given the feedback loops resulting from three-way interactions between O2, NO, and O2−. Notwithstanding vasoactive effects, our model predicts that in the absence of O2−-mediated stimulation of NaCl active transport, the outer medullary concentrating capacity (evaluated as the collecting duct fluid osmolality at the outer-inner medullary junction) would be ∼40% lower. Conversely, without NO-induced inhibition of NaCl active transport, the outer medullary concentrating capacity would increase by ∼70%, but only if that anaerobic metabolism can provide up to half the maximal energy requirements of the outer medulla. The model suggests that in addition to scavenging NO, O2− modulates NO levels indirectly via its stimulation of mTAL metabolism, leading to reduction of O2 as a substrate for NO. When O2− levels are raised 10-fold, as in hypertensive animals, mTAL NaCl reabsorption is significantly enhanced, even as the inefficient use of O2 exacerbates hypoxia in the outer medulla. Conversely, an increase in tubular and vascular flows is predicted to substantially reduce mTAL NaCl reabsorption. In conclusion, our model suggests that the complex interactions between NO, O2−, and O2 significantly impact the O2 balance and NaCl reabsorption in the outer medulla.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zjwan Housein ◽  
Tayeb Sabir Kareem ◽  
Abbas Salihi

AbstractThis study was carried out to assess the impact of nickel nanoparticles (NiNPs) as well as scorpion venom on colorectal cancer (CRC) cells in the presence and/or absence of 5-fluorouracil (5-FU), hydrogen sulfide (H2S), and nitric oxide (NO) donors and to determine alterations in endothelial NO synthase (eNOS) and cystathionine γ-lyase (CSE) enzyme-producing genes in CRC patients. The IC50 of both H2S and NO donors, along with NiNPs, were determined. The CRC cells were treated for 24hrs, and the cytotoxic activities were assessed using the MTT test. Moreover, the apoptosis was determined after 24hrs and 48hrs using TUNEL assay. Furthermore, the mutations in the eNOS gene (intron 4, -786T>C and 894 G>T) and CSE gene (1364GT) were determined using direct sequencing. The IC50 values for sodium disulfide (Na2S) and sodium nitroprusside (SNP) at 24hrs treatment were found to be 5 mM and 10−6 M, respectively, while the IC50 value for 5-FU was reached after 5-days of treatment in CRC cell line. Both black and yellow scorpion venoms showed no inhibition of cell proliferation after 24hrs treatment. Furthermore, Na2S showed a significant decrease in cell proliferation and an increase in apoptosis. Moreover, a co-treatment of SNP and 5-FU resulted in inhibition of the cytotoxic effect of 5-FU, while a combination treatment of NiNPs with Na2S, SNP, and 5-FU caused highly significant cytotoxicity. Direct sequencing reveals new mutations, mainly intronic variation in eNOS gene that has not previously been described in the database. These findings indicate that H2S promotes the anticancer efficiency of 5-FU in the presence of NiNPs while NO has antiapoptotic activity in CRC cell lines.


2016 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
Ryan G. Moran ◽  
Alex T. VonSchulze ◽  
Richard J. Bloomer

Attention has been given recently to herbal dietary supplements proposed to elevate testosterone and nitric oxide. This study evaluated the impact of a supplement containing Spilanthes acmella extract and Orchis latifolia extract on total blood testosterone, cortisol, and nitrate/nitrite in healthy men. Methods: Thirteen men (25.0±1.0 years) were randomly assigned (double-blind, cross-over design) to ingest a supplement (containing Spilanthes acmella extract and Orchis latifolia extract) and a placebo daily for 14 days, with a 14-day washout period between assignments. Fasting blood samples were collected on the mornings of days 1, 4, 8, and 15 and analyzed for testosterone, cortisol, and nitrate/nitrite. On day 15, subjects ingested an acute dose of the supplement or placebo and blood was collected every 30 minutes for three hours, and analyzed for testosterone. Results: No increase of significance was noted for any biochemical variable (p>0.05). However, a mean increase in testosterone from day 1 to day 15 of 29% was observed for the 13 subjects when ingesting the supplement, with a mean increase of 56% noted when only considering the 8 subjects who “responded” to treatment. Cortisol was increased approximately 19% when subjects ingested the supplement, compared to only 9% with the placebo. Conclusion: Two weeks of supplementation with an herbal preparation containing Spilanthes acmella extract and Orchis latifolia extract can increase testosterone in selected young men. The supplement also results in a moderate increase in cortisol. Larger scale studies are needed to further evaluate the impact of this herbal combination on testosterone in men.


Nitric Oxide ◽  
2010 ◽  
Vol 23 (1) ◽  
pp. 34-41 ◽  
Author(s):  
You-Lin Tain ◽  
Chih-Sung Hsieh ◽  
I-Chun Lin ◽  
Chih-Cheng Chen ◽  
Jiunn-Ming Sheen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document