Sequential fermentation for enhanced volumetric productivity of bioethanol from mixed sugars

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121984
Author(s):  
Ruplappara Sharath Kumar ◽  
Pritam Singh ◽  
Sanjoy Ghosh
2019 ◽  
Vol 10 (1) ◽  
pp. 48-56
Author(s):  
Caroline C.A. Magalhães ◽  
Julia A. Romão ◽  
Geiza S. Araújo ◽  
Diego T. Santos ◽  
Giovani B.M. De Carvalho

Background: The use of nutritional supplementation of the brewer&#039;s wort can be an interesting option to increase cell viability and yeast fermentability. </P><P> Objective: This study aims to evaluate the effects of the variables wort concentration and nutritional supplementation with palm oil in the production of beer in high-density wort. </P><P> Methods: The process effects were evaluated through the central composite rotational design of type 22 associated with the Response Surface Methodology (RSM). The fermentations were carried out using the commercial Saccharomyces cerevisiae yeast, lager type, at 15&#176;C. </P><P> Results: The mathematical models and RSM obtained were an efficienct strategy to determine the optimum fermentation point for the ethanol volumetric productivity (wort concentration of 20.90 &#176;P and palm oil content of 0.19 % v/v) and for the apparent degree of fermentation (wort concentration of 16.90 &#176;P and palm oil content of 0.22% v/v). There was a good correlation between the experimental values observed and predicted by the model, indicating that the fit of the model was satisfactory and it can be inferred that the increase of the wort concentration and the nutritional supplementation with the palm oil reached an ethanol volumetric productivity of 0.55 g/L.h and an apparent degree of fermentation of 50.20 %. </P><P> Conclusion: Therefore, it can be concluded that our study demonstrates that nutritional supplementation with palm oil is an alternative and promising option for the breweries to increase productivity. There are recent patents also suggesting the advantages of using alternative nutritional supplements in beverage production.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Fernando Pérez-García ◽  
Arthur Burgardt ◽  
Dina R. Kallman ◽  
Volker F. Wendisch ◽  
Nadav Bar

Residual streams from lignocellulosic processes contain sugar mixtures of glucose, xylose, and mannose. Here, the industrial workhorse Corynebacterium glutamicum was explored as a research platform for the rational utilization of a multiple sugar substrate. The endogenous manA gene was overexpressed to enhance mannose utilization. The overexpression of the xylA gene from Xanthomonas campestris in combination with the endogenous xylB gene enabled xylose consumption by C. glutamicum. Furthermore, riboflavin production was triggered by overexpressing the sigH gene from C. glutamicum. The resulting strains were studied during batch fermentations in flasks and 2 L lab-scale bioreactors separately using glucose, mannose, xylose, and a mixture of these three sugars as a carbon source. The production of riboflavin and consumption of sugars were improved during fed-batch fermentation thanks to a dynamic inoculation strategy of manA overexpressing strain and xylAB overexpressing strain. The final riboflavin titer, yield, and volumetric productivity from the sugar mixture were 27 mg L−1, 0.52 mg g−1, and 0.25 mg L−1 h−1, respectively. It reached a 56% higher volumetric productivity with 45% less by-product formation compared with an equivalent process inoculated with a single strain overexpressing the genes xylAB and manA combined. The results indicate the advantages of dynamic multi strains processes for the conversion of sugar mixtures.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1047
Author(s):  
Laura Canonico ◽  
Edoardo Galli ◽  
Alice Agarbati ◽  
Francesca Comitini ◽  
Maurizio Ciani

In the last few decades, the increase of ethanol in wine, due to global climate change and consumers’ choice is one of the main concerns in winemaking. One of the most promising approaches in reducing the ethanol content in wine is the use of non-Saccharomyces yeasts in co-fermentation or sequential fermentation with Saccharomyces cerevisiae. In this work, we evaluate the use of Starmerella bombicola and S. cerevisiae in sequential fermentation under aeration condition with the aim of reducing the ethanol content with valuable analytical profile. After a preliminary screening in synthetic grape juice, bench-top fermentation trials were conducted in natural grape juice by evaluating the aeration condition (20 mL/L/min during the first 72 h) on ethanol reduction and on the analytical profile of wines. The results showed that S. bombicola/S. cerevisiae sequential fermentation under aeration condition determined an ethanol reduction of 1.46% (v/v) compared with S. cerevisiae pure fermentation. Aeration condition did not negatively affect the analytical profile of sequential fermentation S. bombicola/S. cerevisiae particularly an overproduction of volatile acidity and ethyl acetate. On the other hand, these conditions strongly improved the production of glycerol and succinic acid that positively affect the structure and body of wine.


2015 ◽  
Vol 43 (6) ◽  
pp. 1140-1145 ◽  
Author(s):  
Oliver Hädicke ◽  
Steffen Klamt

Cofactor engineering has been long identified as a valuable tool for metabolic engineering. Besides interventions targeting the pools of redox cofactors, many studies addressed the adenosine pools of microorganisms. In this mini-review, we discuss interventions that manipulate the availability of ATP with a special focus on ATP wasting strategies. We discuss the importance to fine-tune the ATP yield along a production pathway to balance process performance parameters like product yield and volumetric productivity.


2000 ◽  
Vol 55 (3-4) ◽  
pp. 213-217 ◽  
Author(s):  
Walter de Carvalho ◽  
Silvio Silvério da Silva ◽  
Michele Vitolo ◽  
Ismael Maciel de Mancilha

Abstract In this study we used the yeast Candida guilliermondii FTI 20037 immobilized by entrapment in Ca-alginate beads (2 .5 -3 mm diameter) for xylitol production from concentrated sugarcane bagasse hemicellulosic hydrolysate in a repeated batch system. The fermentation runs were carried out in 125- and 250-ml Erlenmeyer flasks placed in an orbital shaker at 30 °C and 200 rpm during 72 h, keeping constant the proportion between work volume and flask total volume. According to the results, cell viability was substantially high (98%) in all fermentative cycles. The values of parameters xylitol yield and volumetric productivity increased significantly with the reutilization of the immobilized biocatalysts. The highest values of xylitol final concentration (11.05 g/1), yield factor (0.47 gig) and volumetric productivity (0.22 g/lh) were obtained in 250-ml Erlenmeyer flasks containing 80 ml of medium plus 20 mi of immobilized biocatalysts. The support used in this study (Ca-alginate) presented stability in the experimental conditions used. The results show that the use of immobilized cells is a promising approach for increasing the xylitol production rates.


2017 ◽  
Vol 243 (12) ◽  
pp. 2175-2185 ◽  
Author(s):  
Juan Manuel Del Fresno ◽  
Antonio Morata ◽  
Iris Loira ◽  
María Antonia Bañuelos ◽  
Carlos Escott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document