A novel in situ transesterification of yellow horn seeds to biodiesel using a dual function switchable solvent

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122974
Author(s):  
Su Zhang ◽  
Litao Wang ◽  
Jiandong Wang ◽  
Jie Yang ◽  
Lina Fu ◽  
...  
2016 ◽  
Vol 10 (2) ◽  
pp. 119-126
Author(s):  
Mahlinda Mahlinda ◽  
Fitriana Djafar

The main purpose of this research was to observer effect co-solvent type (n-Hexane, chloroform and without co-solvent)  toward yield and quality of biodiesel via in situ transesterification process using microwave irradiation. The process was studied at microwave power 450 watt, reaction time 4 minutes, methanol to seed ratio 25:1 and catalyst concentration 5%. The physicochemical parameters of the biodiesel produced such as viscosity, density and acid value were analysed and compared with the SNI 7182-2012 standard. The experimental result showed the maximum yield biodiesel 78,32% obtained by using co-solvent chloroform.Test result of physicochemical properties (viscosity, density and acid value) of biodiesel products using co solvent n-Hexane, chloroform and without co solvent showed that these products conform to the SNI 7182-2012 standars. The type of co-solvent only affectedon biodiesel yield dan not affected on biodiesel quality (viscosity, density and acid value).  ABSTRAKTujuan penelitian ini adalah untuk mempelajari pengaruh jenis co-solvent (n-Hexane, chloroform dan tanpa co-solvent) terhadap rendemen dan mutu biodiesel secara trasesterifikasi in situ menggunakan radiasi gelombang mikro. Proses dilakukan pada daya gelombang mikro 450 watt, waktu reaksi 4 menit, perbandingan berat metanol terhadap bahan baku 25:1 dan jumlah katalis 5%. Parameter fisiko kimia dari produk biodiesel seperti viskositas, densitas dan angka asam di analisa dan dibandingkan dengan standar SNI 7182-2012 tentang biodiesel. Hasil penelitian menunjukkan rendemen maksimum biodiesel sebesar 78,32% diperoleh dengan menggunakan co-solvent chloroform. Hasil pengujian  karakteristik fisiko kimia (viskositas, densitas dan angka asam) dari produk biodiesel menggunakan co-solvent n-Hexane, chloroform dan tanpa co-solvent menunjukkan bahwa semua parameter ini masih memenuhi standar SNI 1782-2012 tentang biodiesel. Jenis co-solvent hanya berpengaruh pada rendemen biodiesel dan tidak berpengaruh terhadap mutu biodiesel (viskositas, densitas dan bilangan asam).Kata kunci: co-solvent, in situ transesterifikasi, microwave, rendemen, mutu   


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shen Wang ◽  
Hongbo Xu ◽  
Tingting Hao ◽  
Peiyuan Wang ◽  
Xiang Zhang ◽  
...  

AbstractElectrochromic supercapacitors (ESCs) are appealing for smart electronic device applications due to their advantages of dual-function integration. Unfortunately, the synchronous dual-function evaluation and the essential reaction mechanism are ambiguous. Herein, we constructed a 3D WO3-x nanowire networks/fluorine-doped tin oxide (WO3-x NWNs/FTO) bifunctional electrode for ESCs by a solvothermal self-crystal seeding method. The synchronous correspondence relationship between the optical and electrochemical performances of the WO3-x NWNs/FTO electrode was explored using an operando spectra-electrochemical characterization method. It reveals an excellent areal capacity of 57.57 mF cm−2 with a high corresponding optical modulation (ΔT) of 85.05% and high optical-electrochemical cycling stability. Furthermore, the synergistic reaction mechanism between the Al3+ ion intercalation behavior and the surface pseudocapacitance reaction during electrochemical cycling is revealed utilizing in situ X-ray diffraction. Based on these results, an ESC device was constructed by pairing WO3-x/FTO as the cathode with V2O5 nanoflowers/FTO (V2O5 NFs/FTO) as the anode, which simultaneously deliver high capacity and large optical modulation. Moreover, the energy storage level of the ESC device could be visually monitored by rapid and reversible color transitions in real time. This work provides a promising pathway to developing multi-functional integrated smart supercapacitors.


RSC Advances ◽  
2016 ◽  
Vol 6 (61) ◽  
pp. 56009-56017 ◽  
Author(s):  
Magdouli Sara ◽  
Satinder Kaur Brar ◽  
Jean François Blais

Recent trends have focused on the development of a rapid method to convert microbial lipids to biodiesel.


2014 ◽  
Vol 625 ◽  
pp. 267-270 ◽  
Author(s):  
Sintayehu Mekuria Hailegiorgis ◽  
Mahadzir Shuhaimi ◽  
Duvvuri Subbarao

In the present work, microwave heat pretreatment of jatropha curcas seed particles and use of phase transfer catalyst (PTC) to enhance in-situ transesterification were utilized together. It was observed that use of alkaline BTMAOH as a PTC and microwave heat pretreatment of jatropha curcas seed particles had substantially increased the reaction rate of in-situ transesterification as compared to the reaction conducted with microwave untreated seeds in the absence of BTMAOH as a PTC. Statistical model equation was developed to investigate the interaction effect of reaction variables and establish optimum reaction condition. At optimum condition, experimentally obtained FAME yield (93.7±1.53% w/w) was in close agreement with statistical model predicted FAME yield (96.75%) at 38°C and 37 minutes of reaction time.


Gels ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 86 ◽  
Author(s):  
Brenda Molina ◽  
Eva Domínguez ◽  
Elaine Armelin ◽  
Carlos Alemán

In this work, we report the design and fabrication of a dual-function integrated system to monitor, in real time, the release of previously loaded 2-methyl-1,4-naphthoquinone (MeNQ), also named vitamin K3. The newly developed system consists of poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles, which were embedded into a poly-γ-glutamic acid (γ-PGA) biohydrogel during the gelling reaction between the biopolymer chains and the cross-linker, cystamine. After this, agglomerates of PEDOT nanoparticles homogeneously dispersed inside the biohydrogel were used as polymerization nuclei for the in situ anodic synthesis of poly(hydroxymethyl-3,4-ethylenedioxythiophene) in aqueous solution. After characterization of the resulting flexible electrode composites, their ability to load and release MeNQ was proven and monitored. Specifically, loaded MeNQ molecules, which organized in shells around PEDOT nanoparticles agglomerates when the drug was simply added to the initial gelling solution, were progressively released to a physiological medium. The latter process was successfully monitored using an electrode composite through differential pulse voltammetry. The fabrication of electroactive flexible biohydrogels for real-time release monitoring opens new opportunities for theranostic therapeutic approaches.


2016 ◽  
Vol 49 ◽  
pp. 212-220 ◽  
Author(s):  
Juanjuan Qi ◽  
Fenfen Zhu ◽  
Xiang Wei ◽  
Luyao Zhao ◽  
Yiqun Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document