Forest soil yeasts: Decomposition potential and the utilization of carbon sources

2018 ◽  
Vol 34 ◽  
pp. 10-19 ◽  
Author(s):  
Tereza Mašínová ◽  
Andrey Yurkov ◽  
Petr Baldrian
2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3829-3834 ◽  
Author(s):  
Seil Kim ◽  
Gyeongtaek Gong ◽  
Tai Hyun Park ◽  
Youngsoon Um

An obligately aerobic, chemoheterotrophic, mesophilic prosthecate bacterium, designated strain CGM1-3ENT, was isolated from the enrichment cultures of forest soil from Cheonggyesan Mountain, Republic of Korea. Cells were Gram-reaction-negative, motile rods (1.3–2.4 µm long by 0.30–0.75 µm wide) with single flagella. The strain grew at 10–37 °C (optimum 25–30 °C) and at pH 4.5–9.5 (optimum 5.0–7.0). The major cellular fatty acids were C16 : 0, C18 : 1ω7c 11-methyl, C12 : 1 3-OH and summed feature 8 (comprising C18 : 1ω7c/C18 : 1ω6c). The genomic DNA G+C content of strain CGM1-3ENT was 63.7 mol%. The closest phylogenetic neighbour to strain CGM1-3ENT was identified as Asticcacaulis biprosthecium DSM 4723T (97.2 % 16S rRNA gene sequence similarity) and the DNA–DNA hybridization value between strain CGM1-3ENT and A. biprosthecium DSM 4723T was less than 24.5 %. Strain CGM1-3ENT used d-glucose, d-fructose, sucrose, maltose, trehalose, d-mannose, d-mannitol, d-sorbitol, d-galactose, cellobiose, lactose, raffinose, fumarate, pyruvate, dl-alanine and glycerol as carbon sources. Based on data from the present polyphasic study, the forest soil isolate CGM1-3ENT is considered to represent a novel species of the genus Asticcacaulis , for which the name Asticcacaulis solisilvae sp. nov. is proposed. The type strain is CGM1-3ENT ( = AIM0088T = KCTC 32102T = JCM 18544T).


2020 ◽  
Vol 70 (4) ◽  
pp. 300-309 ◽  
Author(s):  
B. Clifton‐García ◽  
O. González‐Reynoso ◽  
J.R. Robledo‐Ortiz ◽  
J. Villafaña‐Rojas ◽  
Y. González‐García

Ecosystems ◽  
2008 ◽  
Vol 11 (7) ◽  
pp. 1157-1167 ◽  
Author(s):  
China A. Hanson ◽  
Steven D. Allison ◽  
Mark A. Bradford ◽  
Matthew D. Wallenstein ◽  
Kathleen K. Treseder
Keyword(s):  

2017 ◽  
Author(s):  
Theodore M. Flynn ◽  
Jason C. Koval ◽  
Stephanie M. Greenwald ◽  
Sarah M. Owens ◽  
Kenneth M. Kemner ◽  
...  

AbstractHere we seek to test the extent to which laboratory enrichments mimic natural community processes and the degree to which the initial structure of a community determines its response to a press disturbance via the addition of environmentally-relevant carbon compounds. By utilizing aerobic substrate arrays to examine the effect of carbon amendment on microbial communities taken from six distinct environments (soil from a temperate prairie and forest, tropical forest soil, subalpine forest soil, and surface water and soil from a palustrine emergent wetland), we examined how carbon amendment and inoculum source shape the composition of the community in each enrichment. Dilute subsamples from each environment were used to inoculate 96-well microtiter plates containing triplicate wells amended with one of 31 carbon sources from 6 different classes of organic compound (phenols, polymers, carbohydrates, carboxylic acids, amines, amino acids). After incubating each well aerobically in the dark for 72 hours, we analyzed the composition of the microbial communities on the substrate arrays as well as the initial inocula by sequencing 16S rRNA gene amplicons using the Illumina MiSeq platform. Comparisons of alpha and beta diversity in these systems showed that, while the composition of the communities that grow to inhabit the wells in each substrate array diverges sharply from that of the original community in the inoculum, these enrichment communities are still is strongly affected by the inoculum source. We found most enrichments were dominated by one or several OTUs most closely related to aerobes or facultative anaerobes from theProteobacteria(e.g.Pseudomonas,Burkholderia, andRalstonia) orBacteroidetes(e.g.Chryseobacterium). Comparisons within each substrate array based on the class of carbon source further show that the communities inhabiting wells amended with a carbohydrate differ significantly from those enriched with a phenolic compound. Niche selection therefore seems to play a strong role in shaping the communities in the substrate arrays, although some stochasticity is seen whereby several replicate wells within a single substrate array display strongly divergent community compositions. Overall, the use of highly parallel substrate arrays offers a promising path forward to study the response of microbial communities to a changing environment.


2018 ◽  
Vol 12 (1) ◽  
pp. 256-269 ◽  
Author(s):  
Srilakshmi Akula ◽  
Narasimha Golla

Background:An impressive increase in the application of cellulases in various fields over the last few decades demands extensive research in improving its quality and large-scale production. Therefore, the current investigation focuses on factors relevant for optimal production of cellulase byAspergillus nigerisolated from forest soil.Method:Throughout this study, the fungal strainAspergillus nigerwas maintained under the submerged condition for a period of 7 days at 120 rpm rotational speed. Various physical and chemical conditions were employed in examining their influence on cellulase production by the selected fungal strain. After appropriate incubation, culture filtrates were withdrawn and checked for FPase, CMCase, and β-D-glucosidase activities.Results:The optimum pH and temperature for cellulase production were found to be 5.0 and 32°C, respectively. Among the various carbon sources tested in the present study, amendment of lactose in the medium yielded peak values of FPase (filter paperase) and CMCase (Carboxy-methyl cellulase) whereas fructose supported the higher titers of β-glucosidase. Among the nitrogen sources, profound FPase and CMCase activity were recorded when urea was used but higher β-glucosidase activity was noticed when yeast extract was added. Various natural lignocellulosic substrates like bagasse, coir, corncob, groundnut shells, litter, rice bran, rice husk, sawdust and wheat bran were tested to find out the induction of cellulase. Among the lignocelluloses, sawdust and litter served as good substrates for cellulase production byAspergillus niger.Conclusion:In gist, the outcome of this study sheds light on the cellulolytic potentiality of the fungal strainAspergillus nigerpromising in its future commercial applications which may be economically feasible.


2021 ◽  
Vol 16 (10) ◽  
pp. 92-101
Author(s):  
Muralidharan Sasidhar ◽  
Selvam Masilamani ◽  
Abirami Baskaran ◽  
Manigundan Kaari ◽  
Radhakrishnan Manikkam

Prolonged use of antifungal drugs has led to the emergence of drug resistant fungal pathogens that pose serious threat to public health and challenge to researchers for discovering novel antifungal agents. Natural products from the members of phylum actinobacteria are the promising source of antibiotics including antifungal agents. Twenty-seven morphologically different actinobacterial cultures were isolated from the forest soils of Sabarimala, Kerala and Lucknow, Uttar Pradesh. Actinobacterial strain LA34 showed promising antifungal activity when screened against Candida albicans and Cryptococcus neoformans, hence selected as potential strain. Antifungal compounds were produced from the strain LA34 using agar surface fermentation and its extraction was done using ethyl acetate and methanol. Results of cultural, microscopic and physiological characteristics as well as cell wall amino acid and sugars analysis revealed that the strain LA34 was nonstreptomyces or rare actinobacterium. Various carbon sources, nitrogen sources and minerals were found to influence antifungal compound production by the strain LA34. The present study concluded that the rare actinobacterial strain LA34 isolated from Lucknow forest soil is a promising source for the isolation of antifungal compounds.


2020 ◽  
pp. 181-191
Author(s):  
M. Tkachenko ◽  
N. Borys ◽  
Ye. Kovalenko

The research aims to establish the eff ectiveness of granular chalk use produced by «Slavuta-Calcium» Ltd. under growing Poliska–90 winter wheat variety, changing the physicochemical properties of grey forest soil and the wheat productivity. It also aims to establish optimal dosis of «Slavuta-Calcium» granular chalk as the meliorant and mineral fertilizer for grey forest soil in the system of winter wheat fertilization. In the temporary fi eld studies, various doses of nutrients N60–90–120P30–45–60K60–90–120 combined with «Slavuta–Calcium» granular chalk in a dose of Ca230–460–690 kg/ha of the active substance were studied against the background of secondary plowing of rotation products – soybean biomass that averaged 2.34 t/ha. Granular chalk is a modern complex highly eff ective meliorant with the content of Ca – 37.7 and Mg – 0.2 %, the mass fraction of carbonates (CaCO3 + MgCO3) makes at least 95 %. It is characterized by a high level of solubility when interacting with moisture in soil. It has a form of white granules, the mass fraction of 4.0–6.0 mm in size granules makes not less than 90 % and the one of 1.0 mm in size makes less than 5 %. Reactivity – 97 %. The granular chalk is advisable to apply on acidic soils, as a highly concentrated calcium-magnesium fertilizer, with the former as the dominant fertilizer, to optimize the physicochemical properties of the soil, as well as the plant nutrition system, in particular, increasing the availability of an element for assimilation by plants and as long-term ameliorants. The eff ectiveness of the use of mineral fertilizers, in particular acidic nitrogen on highly and medium acidic soils, after chemical reclamation is increased by 30–50 %, and slightly acidic by 15–20 %. The increase in productivity of crops from the combined eff ects of nutrients and chalk granulated is usually higher than when separately applied. The eff ectiveness of the integrated action of these elements is manifested in the growth of plant productivity and the quality of the resulting products, as well as the optimization of physical chemical properties and soil buff ering in the long term. In order to optimize the physicochemical properties of the arable layer of gray forest soil and the productive nutrition of agricultural crops, winter wheat, in particular, biogenic elements should be used in doses N60-90-120P30-45- 60K60-90-120 with granulated chalk «Slavuta-Calcium» in doses of Ca230-460-690 kg/ha of active substance. Granulated chalk obtained as a result of industrial grinding of solid sedimentary carbonate rocks of natural origin, subsequently under the infl uence of the granulation process of the starting material contains Ca and Mg carbonates of at least 95 %, dense granules which facilitates convenient mechanized application, as well as chalk suitable for accurate metered application on the quest map. Key words: granular chalk, gray forest soil, chemical reclamation, crop productivity.


Author(s):  
Ol'ga Gladysheva ◽  
Oksana Artyuhova ◽  
Vera Svirina

The results of long-term research in experiments with crop rotations with different clover saturation are presented. It is shown that the cluster has a positive effect on the main indicators of vegetation of dark-gray forest soil. The introduction of two fields of perennial grasses into the six-field crop rotation significantly increases both the humus reserves and increases the productivity of arable land by 1.5–2 times compared to the crop rotation with a field of pure steam.


Sign in / Sign up

Export Citation Format

Share Document