Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion

2004 ◽  
Vol 85 (8-10) ◽  
pp. 1065-1088 ◽  
Author(s):  
Yoshihiko Ninomiya ◽  
Lian Zhang ◽  
Atsushi Sato ◽  
Zhongbing Dong
2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Nattasut Mantananont ◽  
Savitri Garivait ◽  
Suthum Patumsawad

This study is focused on the emission of fixed bed combustor batch operated. Real-time analyser ELPI (electrical low-pressure impactor) system was used to size-segregated particulate matter emission ranging from 40 nm to 10 μm. The results show that total number concentration were3.4×103,1.6×104, and1.5×105 particles/cm3⋅kgfuel, while total mass of particles were 12.2, 8.0, and 6.5 mg/Nm3⋅kgfuelfor combustion of lignite, rice husk and bagasse, respectively. But it can be noticed that cofiring released more particulate matter. Meanwhile it was found that the effect of ratio of over-fired air to total air supply is more pronounced, since decrease in this ratio, the amount of particles are decreased significantly. For particle size distribution, it can be observed that submicron-sized particles dominate and the most prevailing size is in the range: 50 nm<Dp<100 nm, for lignite and agricultural residues. However, during cofiring of fuel mixture at 70% rice husk mass concentration, it is found that there are two major fractions of particle size; 40 nm<Dp<70 nm and 0.2 μm<Dp<0.5 μm. The analysis of particle morphology showed that the isolate shape of submicron particle produced during lignite combustion is characterised by different geometries such as round, capsule, rod, flake-like, whereas the spherical shape is obtained with combustion of rice husk.


2011 ◽  
Vol 695 ◽  
pp. 453-456
Author(s):  
Zhao Hui Zhang ◽  
Si Yuan Lu ◽  
Jian Tao Ju ◽  
Kui Yang ◽  
Dong Na Yan

Ca-based sorbents has good performance on retening SO2 during coal combustion. In this paper, the effect of Ca/S molar ratio, coal size, combustion temperature and pretreatment time of the materials on sulfur-retention efficiency has been investigated by the method of orthogonal experiment. The work shown that the sulfur-retention is promoted greatly as Ca/S molar ratio of Ca-based agent increased. Simultaneously, the optimum experiment reveals that CaO as sulfur-fixing agent, Ca/S molar ratio 2.0, combustion temperature of 900°C, coal particle size of smaller than 180 mesh and pretreatment for 30min could attain the best results.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1467
Author(s):  
Kai Xiao ◽  
Yichun Lin ◽  
Qingyue Wang ◽  
Senlin Lu ◽  
Weiqian Wang ◽  
...  

Environmentally persistent free radicals (EPFRs) were previously considered an unrecognized composition of air pollutants and might help explain the long-standing medical mystery of why non-smokers develop tobacco-related diseases such as lung cancer. However, there is no investigated on EPFRs in Xuanwei rural areas, especially in high prevalence of lung cancer areas. In this study, we selected six types of coal and three types of biomass in Xuanwei, then conducted simulated combustion, and six group of atmospheric particulate matters (APMs) to explore the content and particle size distribution pattern of EPFRs and a new health risk assessment method to evaluate the risk of EPFRs in PM for adults and children. Our results show that the contribution of EPFRs for biomass combustion, coal combustion and APMs were mainly distributed in the size range of <1.1 μm, which accounted for 76.15 ± 4.14%, 74.85 ± 10.76%, and 75.23 ± 8.18% of PM3.3. The mean g factors and ΔHp-p indicated that the EPFRs were mainly oxygen-centered radicals in PM in Xuanwei. The results suggest that the health risk of EPFRs is significantly increased when the particle size distribution of EPFRs is taken into account, and coal combustion particulate matter (174.70 ± 37.86 cigarettes for an adult, 66.39 ± 14.39 cigarettes per person per year for a child) is more hazardous to humans than biomass combustion particulate matter (69.41 ± 4.83 cigarettes for an adult, 26.37 ± 1.84 cigarettes per person per year for), followed by APMs (102.88 ± 39.99 cigarettes for an adult, 39.10 ±15.20 cigarettes per person per year for) in PM3.3. Our results provides a new perspective and evidence for revealing the reason for the high incidence of lung cancer in Xuanwei, China.


2018 ◽  
Vol 22 (5) ◽  
pp. 2065-2076 ◽  
Author(s):  
Shuli Wang ◽  
Simon Sprengers ◽  
Bart Somers ◽  
Goey De

Low temperature combustion using gasoline-like fuels has the potential to pro-vide high efficiencies and extremely low NOx and soot emissions. In this study, different volume percentages (30%~70%) of iso-octane, toluene, and n-butanol are blended with n-heptane separately. These blends with different composition ratios are tested on a modified single-cylinder research engine. Also, simulations are performed using a homogeneous reactor method to know the fuel-chemical effects on particulate matter emissions. Thirdly, a composition ratio of 70% is selected to perform further experiments based on the results from the initial composition ratio experiments with a focus on the particle size distributions. It was found that if the test fuel can provide sufficient ignition delay to allow fuel to premix with air fully, the soot emissions will be low and particle size is small even if the test fuel contains a lot of aromatic compounds.


2016 ◽  
Vol 26 (1) ◽  
Author(s):  
L Masondo ◽  
D Masekameni ◽  
T Makonese ◽  
HJ Annegarn ◽  
K Mohlapi

Despite the Government’s intervention of an intensive electrification program in South Africa, which has resulted in more than 87% of households being connected to the grid, a majority of low-income households still depend on solid fuel (coal and wood) as a primary source of energy, especially on the central Highveld. In informal settlements, combustion of coal is done in inefficient self-fabricated braziers, colloquially known as imbaulas. Emissions from domestic coal combustion result in elevated household and ambient air pollution levels that often exceed national air quality limits. Continued dependence on coal combustion exposes households to copious amounts of health-damaging pollutants. Despite the health significance of coal-burning emissions from informal braziers, there is still a dearth of emissions data from these devices. Consequently, evaluating the emission characteristics of these devices and to determine the resultant emission factors is needed. The effects of ignition methods and ventilation rates on particulate and gaseous emission from coal-burning braziers are reported in literature. However, to date there are no studies carried out to investigate the influence of the size of coal pieces on brazier emission performance. In this paper, we report on controlled combustion experiments carried out to investigate systematically, influences of coal particle size on gaseous and condensed matter (smoke) emissions from informal residential coal combustion braziers. Results presented are averages of three identical burn-cycles of duration three hours or fuel burn-out, whichever was the soonest.


Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


1998 ◽  
Vol 38 (6) ◽  
pp. 327-335
Author(s):  
Yasunori Kozuki ◽  
Yoshihiko Hosoi ◽  
Hitoshi Murakami ◽  
Katuhiro Kawamoto

In order to clarify the origin and behavior of suspended particulate matter (SPM) in a tidal river, variation of SPM in a tidal river was investigated with regard to its size and constituents. SPM was separated into three groups according to size. Change of contents of titanium and organic substances of each group of SPM was examined. SPM which was discharged by run-off was transported with decomposition and sedimentation in a tidal river. Concentration of SPM with a particle size greater than 0.45 μm increased due to resuspension in a tidal river. Origin of SPM with a size of less than 0.45 μm at upstream areas was from natural soil and most of such SPM which had been transported settled near a river mouth. It was determined from examination of the CN ratio and the ratio of the number of attached bacteria to free bacteria that SPM with a size greater than 1.0 μm at upstream areas was decomposing intensively. At the downstream areas, SPM with a size of less than 0.45 μm came from the sea. SPM with particle size greater than 1.0 μm consisted of plankton and substances which were decomposed sufficiently while flowing.


Sign in / Sign up

Export Citation Format

Share Document