scholarly journals Climate warming has changed phenology and compressed the climatically suitable habitat of Metasequoia glyptostroboides over the last half century

2020 ◽  
Vol 23 ◽  
pp. e01140
Author(s):  
Zhixia Zhao ◽  
Yue Wang ◽  
Zhenhua Zang ◽  
Shuyu Deng ◽  
Tianyuan Lan ◽  
...  
2017 ◽  
Author(s):  
Youhua Ran ◽  
Xin Li ◽  
Guodong Cheng

Abstract. Temperature increases cause a unique type of damage to permafrost. This damage is often expressed as the degradation of permafrost thermal stability, which is very important for engineering design, resource development, and environmental protection in cold regions. This study evaluates the degradation of permafrost stability over the QTP from the 1960s to the 2000s using estimated decadal mean annual air temperatures (MAATs) by integrating remote sensing-based estimates of mean annual land surface temperatures (MASTs), leaf area index (LAI) and fractional snow cover values, and decadal mean MAATs taken at 152 weather stations using geographically weighted regression (GWR). The results reflect a continuous rise of approximately 0.04 °C/a in the decadal mean MAAT values over the past half century. Climate warming has led to a reduction in permafrost stability in the past half century. The total degraded area of stability is approximately 153.76 x 104 km2, which corresponds to 87.98 % of the permafrost area in the 1960s. The stability of 75.24 % of the extremely stable permafrost, 89.56 % of the stable permafrost, 90.3 % of the sub-stable permafrost, 92.31 % of the transitional permafrost, and 32.8 % of the unstable permafrost has been reduced to lower levels of stability. Approximately 49.4 % of the unstable permafrost and 95.95 % of the extremely unstable permafrost has degraded to seasonally frozen ground. The sensitivity of the permafrost to climate is dependent on its stability level. The mean elevations of the extremely stable, stable, sub-stable, transitional, unstable, and extremely unstable permafrost areas increased by 88 m, 97 m, 155 m, 185 m, 161 m and 250 m, respectively. The degradation mainly occurred from the 1960s to the 1970s and from the 1990s to the 2000s. This degradation has led to increases in risks to infrastructure, increased flood risks, reductions in ecosystem resilience, and positive climate feedback effects. It therefore affects the well-being of millions of people and sustainable development at the Third Pole.


2017 ◽  
Vol 211 ◽  
pp. 125-133 ◽  
Author(s):  
Zhenhua Zang ◽  
Guozhen Shen ◽  
Guofang Ren ◽  
Cuiling Wang ◽  
Chaoyang Feng ◽  
...  

2008 ◽  
Vol 254 (3) ◽  
pp. 420-428 ◽  
Author(s):  
Wenfang Leng ◽  
Hong S. He ◽  
Rencang Bu ◽  
Limin Dai ◽  
Yuanman Hu ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 712
Author(s):  
Bin Wang ◽  
Pengtao Yu ◽  
Lei Zhang ◽  
Yanhui Wang ◽  
Yipeng Yu ◽  
...  

Tree growth strongly responds to climate change, especially in semiarid mountainous areas. In recent decades, China has experienced dramatic climate warming; however, after 2000 the warming trend substantially slowed (indicative of a warming hiatus) in the semiarid areas of China. The responses of tree growth in respect to elevation during this warming hiatus are poorly understood. Here, we present the responses of Qinghai spruce (Picea crassifolia Kom.) growth to warming using a stand-total sampling strategy along an elevational gradient spanning seven plots in the Qilian Mountains. The results indicate that tree growth experienced a decreasing trend from 1980 to 2000 at all elevations, and the decreasing trend slowed with increasing elevation (i.e., a downward trend from −10.73 mm2 year−1 of the basal area increment (BAI) at 2800 m to −3.48 mm2 year−1 of BAI at 3300 m), with an overall standard deviation (STD) of 2.48 mm2 year−1. However, this trend reversed to an increasing trend after 2000, and the increasing trends at the low (2550–2900 m, 0.27–5.07 mm2 year−1 of BAI, p > 0.23) and middle (3000–3180 m, 2.08–2.46 mm2 year−1 of BAI, p > 0.2) elevations were much weaker than at high elevations (3300 m, 23.56 mm2 year−1 of BAI, p < 0.01). From 2000–2013, the difference in tree growth with elevation was much greater than in other sub-periods, with an overall STD of 7.69 mm2 year−1. The stronger drought conditions caused by dramatic climate warming dominated the decreased tree growth during 1980–2000, and the water deficit in the 2550–3180 m range was stronger than at 3300 m, which explained the serious negative trend in tree growth at low and middle elevations. After 2000, the warming hiatus was accompanied by increases in precipitation, which formed a wetting–warming climate. Although moisture availability was still a dominant limiting factor of tree growth, the relieved drought pressure might be the main reason for the recent recovery in the tree growth at middle and low elevations. Moreover, the increasing temperature significantly promoted tree growth at 3300 m, with a correlation coefficient between the temperature and BAI of 0.77 (p < 0.01). Our results implied that climate change drove different growth patterns at different elevations, which sheds light into forest management under the estimated future climate warming: those trees in low and middle elevations should be paid more attention with respect to maintaining tree growth, while high elevations could be a more suitable habitat for this species.


2021 ◽  
Vol 9 ◽  
Author(s):  
Berihun Gebremedhin ◽  
Desalegn Chala ◽  
Øystein Flagstad ◽  
Afework Bekele ◽  
Vegar Bakkestuen ◽  
...  

Populations of large mammals have declined at alarming rates, especially in areas with intensified land use where species can only persist in small habitat fragments. To support conservation planning, we developed habitat suitability models for the Walia ibex (Capra walie), an endangered wild goat endemic to the Simen Mountains, Ethiopia. We calibrated several models that differ in statistical properties to estimate the spatial extent of suitable habitats of the Walia ibex in the Simen Mountains, as well as in other parts of the Ethiopian highlands to assess potentially suitable areas outside the current distribution range of the species. We further addressed the potential consequences of future climate change using a climate model with four emission scenarios. Model projections estimated the potential suitable habitat under current climate to 501–672 km2 in Simen and 6,251–7,732 km2 in other Ethiopian mountains. Under projected climate change by 2,080, the suitable habitat became larger in Simen but smaller in other parts of Ethiopia. The projected expansion in Simen is contrary to the general expectation of shrinking suitable habitats for high-elevation species under climate warming and may partly be due to the ruggedness of these particular mountains. The Walia ibex has a wide altitudinal range and is able to exploit very steep slopes, allowing it to track the expected vegetation shift to higher altitudes. However, this potential positive impact may not last long under continued climate warming, as the species will not have much more new space left to colonize. Our study indicates that the current distribution range can be substantially increased by reintroducing and/or translocating the species to other areas with suitable habitat. Indeed, to increase the viability and prospects for survival of this flagship species, we strongly recommend human-assisted reintroduction to other Ethiopian mountains. Emulating the successful reintroduction of the Alpine ibex that has spread from a single mountain in Italy to its historical ranges of the Alps in Europe might contribute to saving the Walia ibex from extinction.


2013 ◽  
Vol 59 (3) ◽  
pp. 130-140 ◽  
Author(s):  
Lior Blank ◽  
Miska Luoto ◽  
Juha Merilä

Climate change is projected to be particularly strong in northern latitudes, and subarctic species are thus likely to be especially susceptible to the effects of climate warming. We forecast potential effects of climate change on the extent of the suitable habitat of the common frog,Rana temporaria,at the margin of its northern range. We investigated 179 potential breeding sites in subarctic Finland and subjected the data to detailed bioclimate envelope modelling using three state-of-the-art techniques: generalized additive models, maximum entropy and generalized boosting methods. Moreover, we included local environmental factors in the models to investigate whether they improve model performance. Under all tested climate change projections and irrespective of the modelling method, the suitable habitat forR. temporariaincreased in warming climate. The inclusion of local abiotic variables significantly improved the performance of the models. However, June temperature appeared to be the most informative variable in all modelling approaches: a major increase in the extent of suitable habitat occurred when it increased by 1°C. Overall, the modelling results indicate that the distribution of northernR. temporariais likely to be very sensitive to climate warming. The results also highlight the fact that overlooking local abiotic variation can significantly bias bioclimatic modelling results.


2019 ◽  
Vol 5 (2) ◽  
pp. 93-105 ◽  
Author(s):  
Edwin A. Locke ◽  
Gary P. Latham

2020 ◽  
Vol 641 ◽  
pp. 159-175
Author(s):  
J Runnebaum ◽  
KR Tanaka ◽  
L Guan ◽  
J Cao ◽  
L O’Brien ◽  
...  

Bycatch remains a global problem in managing sustainable fisheries. A critical aspect of management is understanding the timing and spatial extent of bycatch. Fisheries management often relies on observed bycatch data, which are not always available due to a lack of reporting or observer coverage. Alternatively, analyzing the overlap in suitable habitat for the target and non-target species can provide a spatial management tool to understand where bycatch interactions are likely to occur. Potential bycatch hotspots based on suitable habitat were predicted for cusk Brosme brosme incidentally caught in the Gulf of Maine American lobster Homarus americanus fishery. Data from multiple fisheries-independent surveys were combined in a delta-generalized linear mixed model to generate spatially explicit density estimates for use in an independent habitat suitability index. The habitat suitability indices for American lobster and cusk were then compared to predict potential bycatch hotspot locations. Suitable habitat for American lobster has increased between 1980 and 2013 while suitable habitat for cusk decreased throughout most of the Gulf of Maine, except for Georges Basin and the Great South Channel. The proportion of overlap in suitable habitat varied interannually but decreased slightly in the spring and remained relatively stable in the fall over the time series. As Gulf of Maine temperatures continue to increase, the interactions between American lobster and cusk are predicted to decline as cusk habitat continues to constrict. This framework can contribute to fisheries managers’ understanding of changes in habitat overlap as climate conditions continue to change and alter where bycatch interactions could occur.


Sign in / Sign up

Export Citation Format

Share Document