Dinitrophenol modulates gene expression levels of angiogenic, cell survival and cardiomyogenic factors in bone marrow derived mesenchymal stem cells

Gene ◽  
2015 ◽  
Vol 555 (2) ◽  
pp. 448-457 ◽  
Author(s):  
Anwar Ali ◽  
Muhammad Aleem Akhter ◽  
Kanwal Haneef ◽  
Irfan Khan ◽  
Nadia Naeem ◽  
...  
2019 ◽  
Vol 20 (3) ◽  
pp. 506 ◽  
Author(s):  
Pei-Lin Shao ◽  
Shun-Cheng Wu ◽  
Zih-Yin Lin ◽  
Mei-Ling Ho ◽  
Chung-Hwan Chen ◽  
...  

Simvastatin (SVS) promotes the osteogenic differentiation of mesenchymal stem cells (MSCs) and has been studied for MSC-based bone regeneration. However, the mechanism underlying SVS-induced osteogenesis is not well understood. We hypothesize that α5 integrin mediates SVS-induced osteogenic differentiation. Bone marrow MSCs (BMSCs) derived from BALB/C mice, referred to as D1 cells, were used. Alizarin red S (calcium deposition) and alkaline phosphatase (ALP) staining were used to evaluate SVS-induced osteogenesis of D1 cells. The mRNA expression levels of α5 integrin and osteogenic marker genes (bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), collagen type I, ALP and osteocalcin (OC)) were detected using quantitative real-time PCR. Surface-expressed α5 integrin was detected using flow cytometry analysis. Protein expression levels of α5 integrin and phosphorylated focal adhesion kinase (p-FAK), which is downstream of α5 integrin, were detected using Western blotting. siRNA was used to deplete the expression of α5 integrin in D1 cells. The results showed that SVS dose-dependently enhanced the gene expression levels of osteogenic marker genes as well as subsequent ALP activity and calcium deposition in D1 cells. Upregulated p-FAK was accompanied by an increased protein expression level of α5 integrin after SVS treatment. Surface-expressed α5 integrin was also upregulated after SVS treatment. Depletion of α5 integrin expression significantly suppressed SVS-induced osteogenic gene expression levels, ALP activity, and calcium deposition in D1 cells. These results identify a critical role of α5 integrin in SVS-induced osteogenic differentiation of BMSCs, which may suggest a therapeutic strategy to modulate α5 integrin/FAK signaling to promote MSC-based bone regeneration.


2016 ◽  
Vol 32 (11) ◽  
pp. 1213-1216 ◽  
Author(s):  
Junya YOSHIOKA ◽  
Toru YOSHITOMI ◽  
Tomoyuki YASUKAWA ◽  
Keitaro YOSHIMOTO

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kulisara Marupanthorn ◽  
Chairat Tantrawatpan ◽  
Pakpoom Kheolamai ◽  
Duangrat Tantikanlayaporn ◽  
Sirikul Manochantr

AbstractMesenchymal stem cells (MSCs) are important in regenerative medicine because of their potential for multi-differentiation. Bone marrow, chorion and placenta have all been suggested as potential sources for clinical application. However, the osteogenic differentiation potential of MSCs derived from chorion or placenta is not very efficient. Bone morphogenetic protein-2 (BMP-2) plays an important role in bone development. Its effect on osteogenic augmentation has been addressed in several studies. Recent studies have also shown a relationship between miRNAs and osteogenesis. We hypothesized that miRNAs targeted to Runt-related transcription factor 2 (Runx-2), a major transcription factor of osteogenesis, are responsible for regulating the differentiation of MSCs into osteoblasts. This study examines the effect of BMP-2 on the osteogenic differentiation of MSCs isolated from chorion and placenta in comparison to bone marrow-derived MSCs and investigates the role of miRNAs in the osteogenic differentiation of MSCs from these sources. MSCs were isolated from human bone marrow, chorion and placenta. The osteogenic differentiation potential after BMP-2 treatment was examined using ALP staining, ALP activity assay, and osteogenic gene expression. Candidate miRNAs were selected and their expression levels during osteoblastic differentiation were examined using real-time RT-PCR. The role of these miRNAs in osteogenesis was investigated by transfection with specific miRNA inhibitors. The level of osteogenic differentiation was monitored after anti-miRNA treatment. MSCs isolated from chorion and placenta exhibited self-renewal capacity and multi-lineage differentiation potential similar to MSCs isolated from bone marrow. BMP-2 treated MSCs showed higher ALP levels and osteogenic gene expression compared to untreated MSCs. All investigated miRNAs (miR-31, miR-106a and miR148) were consistently downregulated during the process of osteogenic differentiation. After treatment with miRNA inhibitors, ALP activity and osteogenic gene expression increased over the time of osteogenic differentiation. BMP-2 has a positive effect on osteogenic differentiation of chorion- and placenta-derived MSCs. The inhibition of specific miRNAs enhanced the osteogenic differentiation capacity of various MSCs in culture and this strategy might be used to promote bone regeneration. However, further in vivo experiments are required to assess the validity of this approach.


2017 ◽  
Vol 60 (6) ◽  
pp. 326-334 ◽  
Author(s):  
Carla Martins Kaneto ◽  
Patrícia S. Pereira Lima ◽  
Karen Lima Prata ◽  
Jane Lima dos Santos ◽  
João Monteiro de Pina Neto ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ruifeng Liu ◽  
Wenjuan Chang ◽  
Hong Wei ◽  
Kaiming Zhang

Mesenchymal stem cells (MSCs) exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp.), including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types.


2006 ◽  
Vol 18 (2) ◽  
pp. 236
Author(s):  
B. Mohana Kumar ◽  
H.-F. Jin ◽  
J.-G. Kim ◽  
S. Balasubramanian ◽  
S.-Y. Choe ◽  
...  

Abnormal gene expression is frequently observed in nuclear transfer (NT) embryos and is one of the suggested causes of the low success rates of this approach. Recent study has suggested that adult stem cells may be better donor cells for NT, as their less differentiated state may ease epigenetic reprogramming by the oocyte (Kato et al. 2004 Biol. Reprod. 70, 415-418). In the present study, we investigated the expression profile of some selected genes involved in the development of the pre-implantation embryos of in vivo- and NT-derived origin using bone marrow mesenchymal stem cells (MSCs) and porcine fetal fibroblasts (pFF) as donors. Isolated population of MSCs from porcine bone marrow were characterized by cell-surface antigen profile (CD13pos, CD105pos, CD45neg, and CD133neg) and by their extensive consistent differentiation to multiple mesenchymal lineages (adipocytic, osteocytic and chondrocytic) under controlled in vitro conditions (Pittenger et al. 1999 Science 284, 143-147). Primary cultures of pFF from a female fetus at <30 days of gestation were established. for NT, donor cells at 3-4 passages were employed. Embryos cloned from MSCs showed enhanced developmental potential compared to pFF cloned embryos, indicated by higher rates of blastocyst formation (15.3% � 4.8 and 9.0% � 3.9, respectively) and total cell number (31.5 � 7.2 and 20.5 � 5.4, respectively) in Day 7 blastocysts. Total RNA was extracted from pools (triplicates) of 10 embryos each of 8-cell, morula, and blastocyst stages of in vivo and NT origin using Dynabeads� mRNA DIRECT" kit (Dynal, Oslo, Norway). Reverse transcription was performed with a Superscript" III cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA). Real-time PCR was performed on a Light cycler� using FastStart DNA Master SYBR Green I (Roche Diagnostics, Mannheim, Germany). The expression profiles of genes involved in transcription (Oct-4, Stat3), DNA methylation (Dnmt1), de novo methylation (Dnmt3a), histone deacetylation (Hdac2), anti-apoptosis (Bcl-xL), and embryonic growth (Igf2r) were determined. The mRNA of H2a was employed to normalize the levels. Significant differences (P < 0.05) in the relative abundance of Stat3, Dnmt1, Dnmt3a, Bcl2, and Igf2r were observed in pFF NT embryos compared with in vivo-produced embryos, whereas embryos derived from MSCs showed expression patterns similar to those of in vivo-produced embryos. However, Oct-4 and Hdac2 revealed similar expression profiles in NT- and in vivo-produced embryos. These results indicate that MSC-derived NT embryos had enhanced embryonic development and their gene expression pattern more closely resembled that of in vivo-produced embryos. Hence, less differentiated MSCs may have a more flexible potential in improving the efficiency of the porcine NT technique. This work was supported by Grant No. R05-2004-000-10702-0 from KOSEF, Republic of Korea.


2009 ◽  
Vol 21 (1) ◽  
pp. 237 ◽  
Author(s):  
D. Kim ◽  
A. J. Maki ◽  
H.-J. Kong ◽  
E. Monaco ◽  
M. Bionaz ◽  
...  

Adipose tissue presents an appealing alternative to bone marrow as a source of mesenchymal stem cells (MSC). However, in order to enhance cell proliferation and differentiation, 3-dimensional (3-D) culture may be required. A 3-D culture has benefits due to its more in vivo-like environment. Further, to form a functional tissue, a scaffold material is required to ensure proper shape and allow for efficient delivery of nutrients and growth factors. Alginate, a resorbable hydrogel, is a potential injectable scaffold for fat and bone tissue engineering due to its high biocompatibility, gelation with calcium and slow dissolution in a physiologic environment. In the present study, we examined the viability, gene expression and morphology of MSC, isolated from porcine adipose (ADSC) and bone marrow (BMSC), during osteogenic and adipogenic differentiation in a 3D alginate hydrogel environment for 0, 7 and 14 days (d). ADSC and BMSC were infused into alginate hydrogels, which polymerized upon the addition of Ca+2 ions. Both stem cell types were differentiated into osteoblasts using 0.1 μm dexamethasone, 10 mm beta glycerophosphate and 50 μm ascorbic acid, whereas adipocytes were differentiated using 10 μm insulin, 1 μm dexamethasone, and 0.5 mm IBMX. Osteogenic differentiation was confirmed using alkaline phosphatase, Von Kossa, and alizarin red S staining and adipogenic differentiation was confirmed using Oil Red O. Cell viability and proliferation was quantified using the MTT assay. Gene expression was measured using qPCR. The morphology of ADSC and BMSC differentiated toward osteogenic lineages changed with both cell types forming osteogenic nodules over time. The nodules formed by ADSC were larger in diameter than those formed by BMSC. Unlike the osteogenic cells that formed nodules, the ADSC and BMSC differentiated into adipogenic cells showed no significant changes in cell size or aggregation. Gene expression results indicated increased PPARG expression in BMSC with time whereas ADSC showed a peak of expression on day 7 and then decreased. ADSC showed increased (14-fold) PPRG expression when compared with BMSC. ADSC had 160-fold less expression of ALP than BMSC. BMSC showed a 16-fold higher expression level of BGLAP than ADSC. ADSC showed a 15.8% higher expression than BMSC for COL1a1. Both ADSC and BMSC showed similar trends SPARC expression, but BMSC had a 12-fold higher expression of SPP1 than ADSC. In summary, both types of mesenchymal stem cells successfully differentiated into both lineages and maintained viability in the hydrogel over time. In conclusion, alginate is a viable scaffold material for the differentiation of mesenchymal stem cells for tissue engineering applications. These results allow for future studies using the pig as an in vivo fat and bone tissue engineering model. This research was supported by the Illinois Regenerative Medicine Institute.


Sign in / Sign up

Export Citation Format

Share Document