Study of solvent effect on the stability of water bridge-linked carboxyl groups in humic acid models

Geoderma ◽  
2011 ◽  
Vol 169 ◽  
pp. 20-26 ◽  
Author(s):  
Adelia J.A. Aquino ◽  
Daniel Tunega ◽  
Hasan Pašalić ◽  
Gabriele E. Schaumann ◽  
Georg Haberhauer ◽  
...  
2010 ◽  
Vol 29 (2) ◽  
pp. 215 ◽  
Author(s):  
Tatjana Anđelković ◽  
Ružica Nikolić ◽  
Aleksandar Bojić ◽  
Darko Anđelković ◽  
Goran Nikolić

The binding of Cd(II) to soil humic acid (HA) at pH 6.5 and in 0.1 mol/L KNO3 ionic medium, was studied by potentiometric titration with a cadmium ion selective electrode. The influence of carboxyl groups in cation-humic interactions was investigated by selective blocking of humic acid carboxyl groups with thionyl chloride and methanol. Infrared spectroscopic analysis confirmed that esterification took place. Differences between underivatized and derivatized HA complexation properties are ascribed to carboxyl groups. The Scatchard plots and incremental formation constants were used to obtain values for Cd-binding constants, for both HAs. The derivatization decreased the number of HA complexing sites by approximately 60 %, which correlates with acid-base properties of both HAs, studied by barium hydroxide and calcium acetate exchange methods. The stability constants for binding at the strongest sites (logKINT) was larger for underivatized HA (5.40) than for derivatized HA (4.92), indicating greater stability in the case when carboxyl groups are involved in complexation reaction.


1985 ◽  
Vol 50 (2) ◽  
pp. 445-453 ◽  
Author(s):  
Jana Podlahová ◽  
Josef Šilha ◽  
Jaroslav Podlaha

Ethylenediphosphinetetraacetic acid is bonded to metal ions in aqueous solutions in four ways, depending on the type of metal ion: 1) through an ionic bond of the carboxylic groups to form weak complexes with a metal:ligand ratio of 1 : 1 (Ca(II), Mn(II), Zn(II), Pb(II), La(III)); 2) through type 1) bond with contributions from weak interaction with the phosphorus (Cd(II)); 3) through coordination of the ligand as a monodentate P-donor with the free carboxyl groups with formation of 2 : 1 and 1 : 1 complexes (Cu(I), Ag(I)); 4) through formation of square planar or, for Hg(II), tetrahedral complexes with a ratio of 1 : 2 with the ligand as a bidentate PP-donor with the free carboxyl groups (Fe(II), Co(II), Ni(II), Pd(II), Pt(II)). On acidification of the complex solution, the first two protons are bonded to the carboxyl groups. The behaviour during further protonation depends on the type of complex: in complexes of types 1) and 2) phosphorus is protonated and the complex dissociates; in complexes of types 3) and 4) the free carboxyl groups are protonated and the phosphorus-metal bond remains intact. The results are based on correlation of the stability constants, UV-visible, infrared, 1H and 31P NMR spectra and magnetic susceptibilities of the complexes in aqueous solution.


2021 ◽  
Vol 379 ◽  
pp. 457-465
Author(s):  
Tiancheng Zhang ◽  
Quanle Zou ◽  
Zhiheng Cheng ◽  
Zihan Chen ◽  
Ying Liu ◽  
...  

Fine jets of slightly conducting viscous fluids and thicker jets or drops of less viscous ones can be drawn from conducting tubes by electric forces. As the potential of the tube relative to a neighbouring plate rises, viscous fluids become nearly conical and fine jets come from the vertices. The potentials at which these jets or drops first appear was measured and compared with calculations. The stability of viscous jets depends on the geometry of the electrodes. Jets as small as 20 μm in diameter and 5 cm long were produced which were quite steady up to a millimetre from their ends. Attempts to describe them mathematically failed. Their stability seems to be due to mechanical rather than electrical causes, like that of a stretched string, which is straight when pulled but bent when pushed. Experiments on the stability of water jets in a parallel electric field reveal two critical fields, one at which jets that are breaking into drops become steady and another at which these steady jets become unsteady again, without breaking into drops. Experiments are described in which a cylindrical soap film becomes unstable under a radial electric field. The results are compared with calculations by A. B. Basset and after a mistake in his analysis is corrected, agreement is found over the range where experiments are possible. Basset’s calculations for axisymmetrical disturbances are extended to those in which the jet moves laterally. Though this is the form in which the instability appears, calculations about uniform jets do not seem to be relevant. In an appendix M. D. Van Dyke calculates the attraction between a long cylinder and a perpendicular plate at a different potential.


2001 ◽  
Vol 124 (2) ◽  
pp. 398-405 ◽  
Author(s):  
S. Yoshimoto ◽  
S. Oshima ◽  
S. Danbara ◽  
T. Shitara

In this paper, the stability of water-lubricated, hydrostatic, conical bearings with spiral grooves for high-speed spindles is investigated theoretically and experimentally. In these bearing types, pressurized water is first fed to the inside of the rotating shaft and then introduced into spiral grooves through feeding holes located at one end of each spiral groove. Therefore, water pressure is increased due to the effect of the centrifugal force at the outlets of the feeding holes, which results from shaft rotation. In addition, water pressure is also increased by the viscous pumping effect of the spiral grooves. The stability of the proposed bearing is theoretically predicted using the perturbation method, and calculated results are compared with experimental results. It was consequently found that the proposed bearing is very stable at high speeds and theoretical predictions show good agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document